x-க்காகத் தீர்க்கவும்
x = \frac{\sqrt{137} + 9}{2} \approx 10.352349955
x=\frac{9-\sqrt{137}}{2}\approx -1.352349955
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
x+1+x\times 4+x\left(x+1\right)=\left(x+1\right)\times 15
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -1,0 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் x,x+1-இன் சிறிய பொது பெருக்கியான x\left(x+1\right)-ஆல் பெருக்கவும்.
5x+1+x\left(x+1\right)=\left(x+1\right)\times 15
x மற்றும் x\times 4-ஐ இணைத்தால், தீர்வு 5x.
5x+1+x^{2}+x=\left(x+1\right)\times 15
x-ஐ x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
6x+1+x^{2}=\left(x+1\right)\times 15
5x மற்றும் x-ஐ இணைத்தால், தீர்வு 6x.
6x+1+x^{2}=15x+15
x+1-ஐ 15-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
6x+1+x^{2}-15x=15
இரு பக்கங்களில் இருந்தும் 15x-ஐக் கழிக்கவும்.
-9x+1+x^{2}=15
6x மற்றும் -15x-ஐ இணைத்தால், தீர்வு -9x.
-9x+1+x^{2}-15=0
இரு பக்கங்களில் இருந்தும் 15-ஐக் கழிக்கவும்.
-9x-14+x^{2}=0
1-இலிருந்து 15-ஐக் கழிக்கவும், தீர்வு -14.
x^{2}-9x-14=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-14\right)}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -9 மற்றும் c-க்குப் பதிலாக -14-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-14\right)}}{2}
-9-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-9\right)±\sqrt{81+56}}{2}
-14-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-9\right)±\sqrt{137}}{2}
56-க்கு 81-ஐக் கூட்டவும்.
x=\frac{9±\sqrt{137}}{2}
-9-க்கு எதிரில் இருப்பது 9.
x=\frac{\sqrt{137}+9}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{9±\sqrt{137}}{2}-ஐத் தீர்க்கவும். \sqrt{137}-க்கு 9-ஐக் கூட்டவும்.
x=\frac{9-\sqrt{137}}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{9±\sqrt{137}}{2}-ஐத் தீர்க்கவும். 9–இலிருந்து \sqrt{137}–ஐக் கழிக்கவும்.
x=\frac{\sqrt{137}+9}{2} x=\frac{9-\sqrt{137}}{2}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x+1+x\times 4+x\left(x+1\right)=\left(x+1\right)\times 15
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -1,0 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் x,x+1-இன் சிறிய பொது பெருக்கியான x\left(x+1\right)-ஆல் பெருக்கவும்.
5x+1+x\left(x+1\right)=\left(x+1\right)\times 15
x மற்றும் x\times 4-ஐ இணைத்தால், தீர்வு 5x.
5x+1+x^{2}+x=\left(x+1\right)\times 15
x-ஐ x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
6x+1+x^{2}=\left(x+1\right)\times 15
5x மற்றும் x-ஐ இணைத்தால், தீர்வு 6x.
6x+1+x^{2}=15x+15
x+1-ஐ 15-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
6x+1+x^{2}-15x=15
இரு பக்கங்களில் இருந்தும் 15x-ஐக் கழிக்கவும்.
-9x+1+x^{2}=15
6x மற்றும் -15x-ஐ இணைத்தால், தீர்வு -9x.
-9x+x^{2}=15-1
இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும்.
-9x+x^{2}=14
15-இலிருந்து 1-ஐக் கழிக்கவும், தீர்வு 14.
x^{2}-9x=14
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=14+\left(-\frac{9}{2}\right)^{2}
-\frac{9}{2}-ஐப் பெற, x உறுப்பின் ஈவான -9-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{9}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-9x+\frac{81}{4}=14+\frac{81}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{9}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}-9x+\frac{81}{4}=\frac{137}{4}
\frac{81}{4}-க்கு 14-ஐக் கூட்டவும்.
\left(x-\frac{9}{2}\right)^{2}=\frac{137}{4}
காரணி x^{2}-9x+\frac{81}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{137}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{9}{2}=\frac{\sqrt{137}}{2} x-\frac{9}{2}=-\frac{\sqrt{137}}{2}
எளிமையாக்கவும்.
x=\frac{\sqrt{137}+9}{2} x=\frac{9-\sqrt{137}}{2}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{9}{2}-ஐக் கூட்டவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}