q-க்காகத் தீர்க்கவும்
q = \frac{1023}{20} = 51\frac{3}{20} = 51.15
வினாடி வினா
Linear Equation
இதற்கு ஒத்த 5 கணக்குகள்:
\frac { 1 } { q } = \frac { 1 } { 33 } - \frac { 1 } { 93 }
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
1023=1023q\times \frac{1}{33}+1023q\left(-\frac{1}{93}\right)
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி q ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் q,33,93-இன் சிறிய பொது பெருக்கியான 1023q-ஆல் பெருக்கவும்.
1023=\frac{1023}{33}q+1023q\left(-\frac{1}{93}\right)
1023 மற்றும் \frac{1}{33}-ஐப் பெருக்கவும், தீர்வு \frac{1023}{33}.
1023=31q+1023q\left(-\frac{1}{93}\right)
31-ஐப் பெற, 33-ஐ 1023-ஆல் வகுக்கவும்.
1023=31q+\frac{1023\left(-1\right)}{93}q
1023\left(-\frac{1}{93}\right)-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
1023=31q+\frac{-1023}{93}q
1023 மற்றும் -1-ஐப் பெருக்கவும், தீர்வு -1023.
1023=31q-11q
-11-ஐப் பெற, 93-ஐ -1023-ஆல் வகுக்கவும்.
1023=20q
31q மற்றும் -11q-ஐ இணைத்தால், தீர்வு 20q.
20q=1023
எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
q=\frac{1023}{20}
இரு பக்கங்களையும் 20-ஆல் வகுக்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}