பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
காரணி
Tick mark Image

பகிர்

\frac{\left(\sqrt{3}\right)^{2}+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
ஒன்றால் வகுக்கப்படும் எந்தவொரு மதிப்பும் அந்த மதிப்பையே வழங்கும்.
\frac{3+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3}-இன் வர்க்கம் 3 ஆகும்.
\frac{3+4\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
பகுதி மற்றும் விகுதியினை \sqrt{2} ஆல் பெருக்கி \frac{1}{\sqrt{2}}-இன் விகுதியினை விகித எண்ணாக மாற்றுங்கள்.
\frac{3+4\times \left(\frac{\sqrt{2}}{2}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2}-இன் வர்க்கம் 2 ஆகும்.
\frac{3+4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\frac{\sqrt{2}}{2}-ஐ பவருக்கு மாற்ற, பகுதி மற்றும் தொகுதி இரண்டையும் பவருக்கு மாற்றி, பிறகு வகுக்கவும்.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
பகுதி மற்றும் விகுதியினை \sqrt{3} ஆல் பெருக்கி \frac{2}{\sqrt{3}}-இன் விகுதியினை விகித எண்ணாக மாற்றுங்கள்.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{3}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3}-இன் வர்க்கம் 3 ஆகும்.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\frac{2\sqrt{3}}{3}-ஐ பவருக்கு மாற்ற, பகுதி மற்றும் தொகுதி இரண்டையும் பவருக்கு மாற்றி, பிறகு வகுக்கவும்.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{3\times \left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
பகுதி மற்றும் தொகுதி இரண்டிலும் 3-ஐ ரத்துசெய்யவும்.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0}{2+2-\left(\sqrt{3}\right)^{2}}
2-இன் அடுக்கு 0-ஐ கணக்கிட்டு, 0-ஐப் பெறவும்.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+0}{2+2-\left(\sqrt{3}\right)^{2}}
5 மற்றும் 0-ஐப் பெருக்கவும், தீர்வு 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
3 மற்றும் 0-ஐக் கூட்டவும், தீர்வு 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
\left(2\sqrt{3}\right)^{2}-ஐ விரிக்கவும்.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
2-இன் அடுக்கு 2-ஐ கணக்கிட்டு, 4-ஐப் பெறவும்.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\times 3}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3}-இன் வர்க்கம் 3 ஆகும்.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{12}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
4 மற்றும் 3-ஐப் பெருக்கவும், தீர்வு 12.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+4}{2+2-\left(\sqrt{3}\right)^{2}}
4-ஐப் பெற, 3-ஐ 12-ஆல் வகுக்கவும்.
\frac{7+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
3 மற்றும் 4-ஐக் கூட்டவும், தீர்வு 7.
\frac{7+\frac{4\times 2}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2}-இன் வர்க்கம் 2 ஆகும்.
\frac{7+\frac{8}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
4 மற்றும் 2-ஐப் பெருக்கவும், தீர்வு 8.
\frac{7+\frac{8}{4}}{2+2-\left(\sqrt{3}\right)^{2}}
2-இன் அடுக்கு 2-ஐ கணக்கிட்டு, 4-ஐப் பெறவும்.
\frac{7+2}{2+2-\left(\sqrt{3}\right)^{2}}
2-ஐப் பெற, 4-ஐ 8-ஆல் வகுக்கவும்.
\frac{9}{2+2-\left(\sqrt{3}\right)^{2}}
7 மற்றும் 2-ஐக் கூட்டவும், தீர்வு 9.
\frac{9}{4-\left(\sqrt{3}\right)^{2}}
2 மற்றும் 2-ஐக் கூட்டவும், தீர்வு 4.
\frac{9}{4-3}
\sqrt{3}-இன் வர்க்கம் 3 ஆகும்.
\frac{9}{1}
4-இலிருந்து 3-ஐக் கழிக்கவும், தீர்வு 1.
9
ஒன்றால் வகுக்கப்படும் எந்தவொரு மதிப்பும் அந்த மதிப்பையே வழங்கும்.