பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
A குறித்து வகையிடவும்
Tick mark Image
மதிப்பிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{\mathrm{d}}{\mathrm{d}A}(\cos(A)-0)
0 மற்றும் 15-ஐப் பெருக்கவும், தீர்வு 0.
\frac{\mathrm{d}}{\mathrm{d}A}(\cos(A)+0)
-1 மற்றும் 0-ஐப் பெருக்கவும், தீர்வு 0.
\frac{\mathrm{d}}{\mathrm{d}A}(\cos(A))
எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
\frac{\mathrm{d}}{\mathrm{d}A}(\cos(A))=\left(\lim_{h\to 0}\frac{\cos(A+h)-\cos(A)}{h}\right)
f\left(x\right) சார்புக்கு, வரம்பு இருந்தால், h ஆனது 0-க்குச் செல்கையில் வகைக்கெழு ஆனது \frac{f\left(x+h\right)-f\left(x\right)}{h}-இன் வரம்பாகும்.
\lim_{h\to 0}\frac{\cos(A+h)-\cos(A)}{h}
கொசைனுக்கான கூட்டல் சூத்திரத்தைப் பயன்படுத்தவும்.
\lim_{h\to 0}\frac{\cos(A)\left(\cos(h)-1\right)-\sin(A)\sin(h)}{h}
\cos(A)-ஐக் காரணிப்படுத்தவும்.
\left(\lim_{h\to 0}\cos(A)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(A)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
வரம்பை மீண்டும் எழுதவும்.
\cos(A)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(A)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
h ஆனது 0-க்குச் செல்லுமாறு வரம்புகளைக் கணக்கிடும் போது, A ஒரு மாறிலி என்ற தகவலைப் பயன்படுத்தவும்.
\cos(A)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(A)
வரம்பு \lim_{A\to 0}\frac{\sin(A)}{A} என்பது 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
வரம்பு \lim_{h\to 0}\frac{\cos(h)-1}{h}-ஐ மதிப்பிட, முதலில் தொகுதியையும் பகுதியையும் \cos(h)+1-ஆல் பெருக்கவும்.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)-1-ஐ \cos(h)+1 முறை பெருக்கவும்.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
பிதாகரஸ் அடையாளத்தைப் பயன்படுத்தவும்.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
வரம்பை மீண்டும் எழுதவும்.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
வரம்பு \lim_{A\to 0}\frac{\sin(A)}{A} என்பது 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
\frac{\sin(h)}{\cos(h)+1} ஆனது 0-இல் தொடர்ச்சியானது என்ற தகவலைப் பயன்படுத்தவும்.
-\sin(A)
0 மதிப்பை \cos(A)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(A) கோவையில் பிரதியிடவும்.