மதிப்பிடவும்
0
காரணி
0
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\left(x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+\frac{3}{2}xy\left(x-\frac{1}{2}y\right)\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\left(x-\frac{1}{2}y\right)^{3}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} பயன்படுத்தவும்.
\left(x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+\frac{3}{2}yx^{2}-\frac{3}{4}xy^{2}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\frac{3}{2}xy-ஐ x-\frac{1}{2}y-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\left(x^{3}+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}-\frac{3}{4}xy^{2}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
-\frac{3}{2}x^{2}y மற்றும் \frac{3}{2}yx^{2}-ஐ இணைத்தால், தீர்வு 0.
\left(x^{3}-\frac{1}{8}y^{3}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\frac{3}{4}xy^{2} மற்றும் -\frac{3}{4}xy^{2}-ஐ இணைத்தால், தீர்வு 0.
\left(x^{3}\right)^{2}-\left(\frac{1}{8}y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\left(x^{3}-\frac{1}{8}y^{3}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-ஐக் கருத்தில் கொள்ளவும். பின்வரும் விதியைப் பயன்படுத்தி, பெருக்கலை வர்க்கங்களின் வேறுபாடுகளுக்கு மாற்றலாம்: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{6}-\left(\frac{1}{8}y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 6-ஐப் பெற, 3 மற்றும் 2-ஐப் பெருக்கவும்.
x^{6}-\left(\frac{1}{8}\right)^{2}\left(y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\left(\frac{1}{8}y^{3}\right)^{2}-ஐ விரிக்கவும்.
x^{6}-\left(\frac{1}{8}\right)^{2}y^{6}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 6-ஐப் பெற, 3 மற்றும் 2-ஐப் பெருக்கவும்.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
2-இன் அடுக்கு \frac{1}{8}-ஐ கணக்கிட்டு, \frac{1}{64}-ஐப் பெறவும்.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}\right)^{3}\left(y^{2}\right)^{3}-x^{6}
\left(-\frac{1}{4}y^{2}\right)^{3}-ஐ விரிக்கவும்.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}\right)^{3}y^{6}-x^{6}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 6-ஐப் பெற, 2 மற்றும் 3-ஐப் பெருக்கவும்.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{64}y^{6}\right)-x^{6}
3-இன் அடுக்கு -\frac{1}{4}-ஐ கணக்கிட்டு, -\frac{1}{64}-ஐப் பெறவும்.
x^{6}-\frac{1}{64}y^{6}+\frac{1}{64}y^{6}-x^{6}
-\frac{1}{64}y^{6}-க்கு எதிரில் இருப்பது \frac{1}{64}y^{6}.
x^{6}-x^{6}
-\frac{1}{64}y^{6} மற்றும் \frac{1}{64}y^{6}-ஐ இணைத்தால், தீர்வு 0.
0
x^{6} மற்றும் -x^{6}-ஐ இணைத்தால், தீர்வு 0.
\frac{\left(\left(2x-y\right)^{3}+6xy\left(2x-y\right)\right)\left(y^{3}+8x^{3}\right)+y^{6}-64x^{6}}{64}
\frac{1}{64}-ஐக் காரணிப்படுத்தவும்.
0
எளிமையாக்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}