மதிப்பிடவும்
\frac{1}{a^{5}}
விரி
\frac{1}{a^{5}}
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\frac{\left(\frac{\frac{1}{b}a^{4}}{b^{2}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
அதே அடியின் அடுக்குகளைப் பிரிப்பதற்கு, தொகுதியின் அடுக்கிலிருந்து பகுதியின் அடுக்கைக் கழிக்கவும்.
\frac{\left(\frac{a^{4}}{b^{3}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
அதே அடியின் அடுக்குகளைப் பிரிப்பதற்கு, தொகுதியின் அடுக்கிலிருந்து பகுதியின் அடுக்கைக் கழிக்கவும்.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
\frac{a^{4}}{b^{3}}-ஐ பவருக்கு மாற்ற, பகுதி மற்றும் தொகுதி இரண்டையும் பவருக்கு மாற்றி, பிறகு வகுக்கவும்.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b^{5}}{a^{3}}\right)^{3}}
அதே அடியின் அடுக்குகளைப் பிரிப்பதற்கு, தொகுதியின் அடுக்கிலிருந்து பகுதியின் அடுக்கைக் கழிக்கவும்.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{b^{5}}{a^{5}}\right)^{3}}
அதே அடியின் அடுக்குகளைப் பிரிப்பதற்கு, தொகுதியின் அடுக்கிலிருந்து பகுதியின் அடுக்கைக் கழிக்கவும்.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}}
\frac{b^{5}}{a^{5}}-ஐ பவருக்கு மாற்ற, பகுதி மற்றும் தொகுதி இரண்டையும் பவருக்கு மாற்றி, பிறகு வகுக்கவும்.
\frac{\left(a^{4}\right)^{-5}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}-இன் தலைகீழ் மதிப்பால் \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}-ஐப் பெருக்குவதன் மூலம் \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}-ஐ \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}-ஆல் வகுக்கவும்.
\frac{a^{-20}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். -20-ஐப் பெற, 4 மற்றும் -5-ஐப் பெருக்கவும்.
\frac{a^{-20}a^{15}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 15-ஐப் பெற, 5 மற்றும் 3-ஐப் பெருக்கவும்.
\frac{a^{-5}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும். -5-ஐப் பெற, -20 மற்றும் 15-ஐக் கூட்டவும்.
\frac{a^{-5}}{b^{-15}\left(b^{5}\right)^{3}}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். -15-ஐப் பெற, 3 மற்றும் -5-ஐப் பெருக்கவும்.
\frac{a^{-5}}{b^{-15}b^{15}}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 15-ஐப் பெற, 5 மற்றும் 3-ஐப் பெருக்கவும்.
\frac{a^{-5}}{1}
b^{-15} மற்றும் b^{15}-ஐப் பெருக்கவும், தீர்வு 1.
a^{-5}
ஒன்றால் வகுக்கப்படும் எந்தவொரு மதிப்பும் அந்த மதிப்பையே வழங்கும்.
\frac{\left(\frac{\frac{1}{b}a^{4}}{b^{2}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
அதே அடியின் அடுக்குகளைப் பிரிப்பதற்கு, தொகுதியின் அடுக்கிலிருந்து பகுதியின் அடுக்கைக் கழிக்கவும்.
\frac{\left(\frac{a^{4}}{b^{3}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
அதே அடியின் அடுக்குகளைப் பிரிப்பதற்கு, தொகுதியின் அடுக்கிலிருந்து பகுதியின் அடுக்கைக் கழிக்கவும்.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
\frac{a^{4}}{b^{3}}-ஐ பவருக்கு மாற்ற, பகுதி மற்றும் தொகுதி இரண்டையும் பவருக்கு மாற்றி, பிறகு வகுக்கவும்.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b^{5}}{a^{3}}\right)^{3}}
அதே அடியின் அடுக்குகளைப் பிரிப்பதற்கு, தொகுதியின் அடுக்கிலிருந்து பகுதியின் அடுக்கைக் கழிக்கவும்.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{b^{5}}{a^{5}}\right)^{3}}
அதே அடியின் அடுக்குகளைப் பிரிப்பதற்கு, தொகுதியின் அடுக்கிலிருந்து பகுதியின் அடுக்கைக் கழிக்கவும்.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}}
\frac{b^{5}}{a^{5}}-ஐ பவருக்கு மாற்ற, பகுதி மற்றும் தொகுதி இரண்டையும் பவருக்கு மாற்றி, பிறகு வகுக்கவும்.
\frac{\left(a^{4}\right)^{-5}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}-இன் தலைகீழ் மதிப்பால் \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}-ஐப் பெருக்குவதன் மூலம் \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}-ஐ \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}-ஆல் வகுக்கவும்.
\frac{a^{-20}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். -20-ஐப் பெற, 4 மற்றும் -5-ஐப் பெருக்கவும்.
\frac{a^{-20}a^{15}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 15-ஐப் பெற, 5 மற்றும் 3-ஐப் பெருக்கவும்.
\frac{a^{-5}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும். -5-ஐப் பெற, -20 மற்றும் 15-ஐக் கூட்டவும்.
\frac{a^{-5}}{b^{-15}\left(b^{5}\right)^{3}}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். -15-ஐப் பெற, 3 மற்றும் -5-ஐப் பெருக்கவும்.
\frac{a^{-5}}{b^{-15}b^{15}}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 15-ஐப் பெற, 5 மற்றும் 3-ஐப் பெருக்கவும்.
\frac{a^{-5}}{1}
b^{-15} மற்றும் b^{15}-ஐப் பெருக்கவும், தீர்வு 1.
a^{-5}
ஒன்றால் வகுக்கப்படும் எந்தவொரு மதிப்பும் அந்த மதிப்பையே வழங்கும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}