மதிப்பிடவும்
\left(\frac{x}{y}\right)^{2}
x குறித்து வகையிடவும்
\frac{2x}{y^{2}}
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\frac{\left(\sqrt{x^{2}+y^{2}}-y\right)\left(\sqrt{x^{2}+y^{2}}+y\right)}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
\frac{\sqrt{x^{2}+y^{2}}-y}{x-\sqrt{x^{2}-y^{2}}}-இன் தலைகீழ் மதிப்பால் \frac{\sqrt{x^{2}-y^{2}}+x}{\sqrt{x^{2}+y^{2}}+y}-ஐப் பெருக்குவதன் மூலம் \frac{\sqrt{x^{2}+y^{2}}-y}{x-\sqrt{x^{2}-y^{2}}}-ஐ \frac{\sqrt{x^{2}-y^{2}}+x}{\sqrt{x^{2}+y^{2}}+y}-ஆல் வகுக்கவும்.
\frac{\left(\sqrt{x^{2}+y^{2}}\right)^{2}-y^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
\left(\sqrt{x^{2}+y^{2}}-y\right)\left(\sqrt{x^{2}+y^{2}}+y\right)-ஐக் கருத்தில் கொள்ளவும். பின்வரும் விதியைப் பயன்படுத்தி, பெருக்கலை வர்க்கங்களின் வேறுபாடுகளுக்கு மாற்றலாம்: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}+y^{2}-y^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
2-இன் அடுக்கு \sqrt{x^{2}+y^{2}}-ஐ கணக்கிட்டு, x^{2}+y^{2}-ஐப் பெறவும்.
\frac{x^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
y^{2} மற்றும் -y^{2}-ஐ இணைத்தால், தீர்வு 0.
\frac{x^{2}}{x^{2}-\left(\sqrt{x^{2}-y^{2}}\right)^{2}}
\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)-ஐக் கருத்தில் கொள்ளவும். பின்வரும் விதியைப் பயன்படுத்தி, பெருக்கலை வர்க்கங்களின் வேறுபாடுகளுக்கு மாற்றலாம்: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}}{x^{2}-\left(x^{2}-y^{2}\right)}
2-இன் அடுக்கு \sqrt{x^{2}-y^{2}}-ஐ கணக்கிட்டு, x^{2}-y^{2}-ஐப் பெறவும்.
\frac{x^{2}}{x^{2}-x^{2}+y^{2}}
x^{2}-y^{2}-இன் எதிர்ச்சொல்லைக் கண்டறிய, ஒவ்வொரு வார்த்தையின் எதிர்ச்சொல்லையும் கண்டறியவும்.
\frac{x^{2}}{y^{2}}
x^{2} மற்றும் -x^{2}-ஐ இணைத்தால், தீர்வு 0.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}