Hoppa till huvudinnehåll
Microsoft
|
Math Solver
Lösa
Praktik
Leka
Ämnen
Före Algebra
Betyda
Läge
Största gemensamma faktorn
Minst vanliga flera
Verksamhetsordning
Fraktioner
Blandade fraktioner
Främsta factorization
Exponenter
Radikaler
Algebra
Kombinera som termer
Lös för en variabel
Faktor
Expandera
Utvärdera bråktal
Linjära ekvationer
Kvadratiska ekvationer
Ojämlikhet
System av ekvationer
Matriser
Trigonometri
Förenkla
Evaluera
Grafer
Lös ekvationer
Kalkyl
Derivat
Integraler
Gränser
Ingångar för algebra
Trigonometriska ingångar
Ingångar för analys
Matris ingångar
Lösa
Praktik
Leka
Ämnen
Före Algebra
Betyda
Läge
Största gemensamma faktorn
Minst vanliga flera
Verksamhetsordning
Fraktioner
Blandade fraktioner
Främsta factorization
Exponenter
Radikaler
Algebra
Kombinera som termer
Lös för en variabel
Faktor
Expandera
Utvärdera bråktal
Linjära ekvationer
Kvadratiska ekvationer
Ojämlikhet
System av ekvationer
Matriser
Trigonometri
Förenkla
Evaluera
Grafer
Lös ekvationer
Kalkyl
Derivat
Integraler
Gränser
Ingångar för algebra
Trigonometriska ingångar
Ingångar för analys
Matris ingångar
x
→
0
lim
5
Grundläggande
algebra
trigonometri
kalkyl
statistik
Matriser
Tecken
Beräkna
5
5
Frågesport
Limits
\lim_{ x \rightarrow 0 } 5
x
→
0
lim
5
Videor
What are variables, expressions, and equations? | Introduction to algebra | Algebra I | Khan Academy
YouTube
Introduction to Algebra: Using Variables
YouTube
Introduction to solving an equation with variables on both sides | Algebra I | Khan Academy
YouTube
Oops. Something went wrong. Please try again. | Khan Academy
khanacademy.org
Epsilon - Delta Proof (constant function)
YouTube
Epsilon - Delta Proof (precise definition of the limit)
YouTube
Fler Videor
Liknande problem från webbsökning
Is \lim_{x\to 0} (x) different from dx
Is
lim
x
→
0
(
x
)
different from
d
x
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was
d
y
/
d
x
, where
d
y
and
d
x
were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
Calculating the limit:
x
→
0
lim
x
2
l
n
(
x
s
i
n
x
)
.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
We want
L
=
lim
x
→
0
x
2
l
n
(
x
s
i
n
x
)
Since the top approaches
ln
(
1
)
=
0
and the bottom also approaches
0
, we may use L'Hopital:
L
=
lim
x
→
0
2
x
(
s
i
n
x
x
)
(
x
2
x
c
o
s
x
−
s
i
n
x
)
=
lim
x
→
0
2
x
2
s
i
n
x
x
c
o
s
x
−
s
i
n
x
...
Left/right-hand limits and the l'Hôpital's rule
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the
↘
and
↗
notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on
(
0
,
1
)
having no limit as
x
→
0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
What you did is correct. In order to show that
α
=
β
, suppose otherwise. That is, suppose that
α
=
β
. I will prove that
lim
x
→
0
f
(
x
)
=
α
(
=
β
)
, thereby reaching a ...
Use L'Hopital's with this problem?
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Let
y
=
x
→
0
+
lim
(
x
1
)
s
i
n
x
,
Now Let
x
=
0
+
h
,
Then
y
=
h
→
0
lim
(
h
1
)
s
i
n
h
So
ln
(
y
)
=
h
→
0
lim
sin
(
h
)
⋅
ln
(
h
1
)
=
−
h
→
0
lim
sin
h
⋅
ln
(
h
)
=
−
h
→
0
lim
csc
(
h
)
ln
(
h
)
(
∞
∞
)
...
Fler Objekt
Aktie
Kopia
Kopieras till Urklipp
Liknande problem
\lim_{ x \rightarrow 0 } 5
x
→
0
lim
5
\lim_{ x \rightarrow 0 } 5x
x
→
0
lim
5
x
\lim_{ x \rightarrow 0 } \frac{2}{x}
x
→
0
lim
x
2
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
x
→
0
lim
x
2
1
Tillbaka till toppen