Lös ut a (complex solution)
a=e^{\frac{Im(x)arg(y)+iRe(x)arg(y)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\left(|y|\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
Lös ut x (complex solution)
\left\{\begin{matrix}x=\frac{2\pi n_{1}i}{\ln(a-4)}+\log_{a-4}\left(y\right)\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq 0\text{ and }a\neq 5\text{ and }a\neq 4\\x\in \mathrm{C}\text{, }&\left(a=4\text{ and }y=0\right)\text{ or }\left(a=5\text{ and }y=1\right)\end{matrix}\right,
Lös ut a
\left\{\begin{matrix}a=y^{\frac{1}{x}}+4\text{, }&\left(y>0\text{ and }x\neq 0\text{ and }y^{\frac{1}{x}}+4>4\right)\text{ or }\left(y>0\text{ and }x\neq 0\text{ and }y^{\frac{1}{x}}+4<4\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(y=0\text{ and }x>0\right)\text{ or }\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }y<0\text{ and }y^{\frac{1}{x}}\neq 0\text{ and }y^{\frac{1}{x}}+4\neq 4\right)\\a=4-y^{\frac{1}{x}}\text{, }&\left(y>0\text{ and }x\neq 0\text{ and }y^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }4-y^{\frac{1}{x}}>4\right)\text{ or }\left(y>0\text{ and }x\neq 0\text{ and }y^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }4-y^{\frac{1}{x}}<4\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(Numerator(x)\text{bmod}2=0\text{ and }y=0\text{ and }x>0\right)\text{ or }\left(x\neq 0\text{ and }y>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }4-y^{\frac{1}{x}}\neq 4\right)\text{ or }\left(y<0\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }y^{\frac{1}{x}}\neq 0\text{ and }4-y^{\frac{1}{x}}\neq 4\right)\\a\neq 4\text{, }&y=1\text{ and }x=0\end{matrix}\right,
Lös ut x
\left\{\begin{matrix}x=\log_{a-4}\left(y\right)\text{, }&y>0\text{ and }a\neq 5\text{ and }a>4\\x\in \mathrm{R}\text{, }&\left(a=5\text{ and }y=1\right)\text{ or }\left(a=3\text{ and }y=-1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=1\right)\\x>0\text{, }&a=4\text{ and }y=0\end{matrix}\right,
Aktie
Kopieras till Urklipp
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}