Lös ut x
x=4
Graf
Aktie
Kopieras till Urklipp
\left(x-2\right)^{2}=\left(\sqrt{x}\right)^{2}
Kvadrera båda ekvationsled.
x^{2}-4x+4=\left(\sqrt{x}\right)^{2}
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(x-2\right)^{2}.
x^{2}-4x+4=x
Beräkna \sqrt{x} upphöjt till 2 och få x.
x^{2}-4x+4-x=0
Subtrahera x från båda led.
x^{2}-5x+4=0
Slå ihop -4x och -x för att få -5x.
a+b=-5 ab=4
För att lösa ekvationen, faktor x^{2}-5x+4 med hjälp av formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Konfigurera ett system som ska lösas om du vill söka efter a och b.
-1,-4 -2,-2
Eftersom ab är positivt a och b ha samma tecken. Eftersom a+b är negativt är a och b negativa. Lista alla sådana heltalspar som ger produkten 4.
-1-4=-5 -2-2=-4
Beräkna summan för varje par.
a=-4 b=-1
Lösningen är det par som ger Summa -5.
\left(x-4\right)\left(x-1\right)
Skriv om det faktoriserade uttrycket \left(x+a\right)\left(x+b\right) med hjälp av de erhållna värdena.
x=4 x=1
Lös x-4=0 och x-1=0 om du vill hitta ekvations lösningar.
4-2=\sqrt{4}
Ersätt x med 4 i ekvationen x-2=\sqrt{x}.
2=2
Förenkla. Värdet x=4 uppfyller ekvationen.
1-2=\sqrt{1}
Ersätt x med 1 i ekvationen x-2=\sqrt{x}.
-1=1
Förenkla. Värdet x=1 matchar inte ekvationen eftersom vänster och höger sida har motsatta tecken.
x=4
Ekvations x-2=\sqrt{x} har en unik lösning.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}