Hoppa till huvudinnehåll
Faktorisera
Tick mark Image
Beräkna
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

a+b=-3 ab=1\left(-28\right)=-28
Faktorisera uttrycket genom gruppering. Först måste uttrycket skrivas om som x^{2}+ax+bx-28. Konfigurera ett system som ska lösas om du vill söka efter a och b.
1,-28 2,-14 4,-7
Eftersom ab är negativt a och b har motsatta tecken. Eftersom a+b är negativt har det negativa talet större absolut värde än det positiva. Lista alla sådana heltalspar som ger produkten -28.
1-28=-27 2-14=-12 4-7=-3
Beräkna summan för varje par.
a=-7 b=4
Lösningen är det par som ger Summa -3.
\left(x^{2}-7x\right)+\left(4x-28\right)
Skriv om x^{2}-3x-28 som \left(x^{2}-7x\right)+\left(4x-28\right).
x\left(x-7\right)+4\left(x-7\right)
Utfaktor x i den första och den 4 i den andra gruppen.
\left(x-7\right)\left(x+4\right)
Bryt ut den gemensamma termen x-7 genom att använda distributivitet.
x^{2}-3x-28=0
Ett kvadratisk polynom kan faktoriseras med transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), där x_{1} och x_{2} är lösningarna för andragradsekvationen ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-28\right)}}{2}
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-28\right)}}{2}
Kvadrera -3.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2}
Multiplicera -4 med -28.
x=\frac{-\left(-3\right)±\sqrt{121}}{2}
Addera 9 till 112.
x=\frac{-\left(-3\right)±11}{2}
Dra kvadratroten ur 121.
x=\frac{3±11}{2}
Motsatsen till -3 är 3.
x=\frac{14}{2}
Lös nu ekvationen x=\frac{3±11}{2} när ± är plus. Addera 3 till 11.
x=7
Dela 14 med 2.
x=-\frac{8}{2}
Lös nu ekvationen x=\frac{3±11}{2} när ± är minus. Subtrahera 11 från 3.
x=-4
Dela -8 med 2.
x^{2}-3x-28=\left(x-7\right)\left(x-\left(-4\right)\right)
Faktorisera det ursprungliga uttrycket med ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Ersätt x_{1} med 7 och x_{2} med -4.
x^{2}-3x-28=\left(x-7\right)\left(x+4\right)
Förenkla alla uttryck på formen p-\left(-q\right) till p+q.