Hoppa till huvudinnehåll
Lös ut x
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

x^{2}-3x+53-3x=44
Subtrahera 3x från båda led.
x^{2}-6x+53=44
Slå ihop -3x och -3x för att få -6x.
x^{2}-6x+53-44=0
Subtrahera 44 från båda led.
x^{2}-6x+9=0
Subtrahera 44 från 53 för att få 9.
a+b=-6 ab=9
För att lösa ekvationen, faktor x^{2}-6x+9 med hjälp av formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Konfigurera ett system som ska lösas om du vill söka efter a och b.
-1,-9 -3,-3
Eftersom ab är positivt a och b ha samma tecken. Eftersom a+b är negativt är a och b negativa. Lista alla sådana heltalspar som ger produkten 9.
-1-9=-10 -3-3=-6
Beräkna summan för varje par.
a=-3 b=-3
Lösningen är det par som ger Summa -6.
\left(x-3\right)\left(x-3\right)
Skriv om det faktoriserade uttrycket \left(x+a\right)\left(x+b\right) med hjälp av de erhållna värdena.
\left(x-3\right)^{2}
Skriv om som en binomkvadrat.
x=3
Lös x-3=0 för att hitta ekvationslösning.
x^{2}-3x+53-3x=44
Subtrahera 3x från båda led.
x^{2}-6x+53=44
Slå ihop -3x och -3x för att få -6x.
x^{2}-6x+53-44=0
Subtrahera 44 från båda led.
x^{2}-6x+9=0
Subtrahera 44 från 53 för att få 9.
a+b=-6 ab=1\times 9=9
För att lösa ekvationen kan du faktor den vänstra delen med hjälp av gruppering. Första, vänstra sidan måste skrivas om som x^{2}+ax+bx+9. Konfigurera ett system som ska lösas om du vill söka efter a och b.
-1,-9 -3,-3
Eftersom ab är positivt a och b ha samma tecken. Eftersom a+b är negativt är a och b negativa. Lista alla sådana heltalspar som ger produkten 9.
-1-9=-10 -3-3=-6
Beräkna summan för varje par.
a=-3 b=-3
Lösningen är det par som ger Summa -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Skriv om x^{2}-6x+9 som \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Utfaktor x i den första och den -3 i den andra gruppen.
\left(x-3\right)\left(x-3\right)
Bryt ut den gemensamma termen x-3 genom att använda distributivitet.
\left(x-3\right)^{2}
Skriv om som en binomkvadrat.
x=3
Lös x-3=0 för att hitta ekvationslösning.
x^{2}-3x+53-3x=44
Subtrahera 3x från båda led.
x^{2}-6x+53=44
Slå ihop -3x och -3x för att få -6x.
x^{2}-6x+53-44=0
Subtrahera 44 från båda led.
x^{2}-6x+9=0
Subtrahera 44 från 53 för att få 9.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 1, b med -6 och c med 9 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Kvadrera -6.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Multiplicera -4 med 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
Addera 36 till -36.
x=-\frac{-6}{2}
Dra kvadratroten ur 0.
x=\frac{6}{2}
Motsatsen till -6 är 6.
x=3
Dela 6 med 2.
x^{2}-3x+53-3x=44
Subtrahera 3x från båda led.
x^{2}-6x+53=44
Slå ihop -3x och -3x för att få -6x.
x^{2}-6x=44-53
Subtrahera 53 från båda led.
x^{2}-6x=-9
Subtrahera 53 från 44 för att få -9.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Dividera -6, koefficienten för termen x, med 2 för att få -3. Addera sedan kvadraten av -3 till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-6x+9=-9+9
Kvadrera -3.
x^{2}-6x+9=0
Addera -9 till 9.
\left(x-3\right)^{2}=0
Faktorisera x^{2}-6x+9. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Dra kvadratroten ur båda ekvationsled.
x-3=0 x-3=0
Förenkla.
x=3 x=3
Addera 3 till båda ekvationsled.
x=3
Ekvationen har lösts. Lösningarna är samma.