Hoppa till huvudinnehåll
Faktorisera
Tick mark Image
Beräkna
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

a+b=8 ab=1\times 12=12
Faktorisera uttrycket genom gruppering. Först måste uttrycket skrivas om som x^{2}+ax+bx+12. Konfigurera ett system som ska lösas om du vill söka efter a och b.
1,12 2,6 3,4
Eftersom ab är positivt a och b ha samma tecken. Eftersom a+b är positivt är a och b positiva. Lista alla sådana heltalspar som ger produkten 12.
1+12=13 2+6=8 3+4=7
Beräkna summan för varje par.
a=2 b=6
Lösningen är det par som ger Summa 8.
\left(x^{2}+2x\right)+\left(6x+12\right)
Skriv om x^{2}+8x+12 som \left(x^{2}+2x\right)+\left(6x+12\right).
x\left(x+2\right)+6\left(x+2\right)
Utfaktor x i den första och den 6 i den andra gruppen.
\left(x+2\right)\left(x+6\right)
Bryt ut den gemensamma termen x+2 genom att använda distributivitet.
x^{2}+8x+12=0
Ett kvadratisk polynom kan faktoriseras med transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), där x_{1} och x_{2} är lösningarna för andragradsekvationen ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 12}}{2}
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
x=\frac{-8±\sqrt{64-4\times 12}}{2}
Kvadrera 8.
x=\frac{-8±\sqrt{64-48}}{2}
Multiplicera -4 med 12.
x=\frac{-8±\sqrt{16}}{2}
Addera 64 till -48.
x=\frac{-8±4}{2}
Dra kvadratroten ur 16.
x=-\frac{4}{2}
Lös nu ekvationen x=\frac{-8±4}{2} när ± är plus. Addera -8 till 4.
x=-2
Dela -4 med 2.
x=-\frac{12}{2}
Lös nu ekvationen x=\frac{-8±4}{2} när ± är minus. Subtrahera 4 från -8.
x=-6
Dela -12 med 2.
x^{2}+8x+12=\left(x-\left(-2\right)\right)\left(x-\left(-6\right)\right)
Faktorisera det ursprungliga uttrycket med ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Ersätt x_{1} med -2 och x_{2} med -6.
x^{2}+8x+12=\left(x+2\right)\left(x+6\right)
Förenkla alla uttryck på formen p-\left(-q\right) till p+q.