Hoppa till huvudinnehåll
Lös ut x
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

x^{2}+3-8x=0
Subtrahera 8x från båda led.
x^{2}-8x+3=0
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3}}{2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 1, b med -8 och c med 3 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 3}}{2}
Kvadrera -8.
x=\frac{-\left(-8\right)±\sqrt{64-12}}{2}
Multiplicera -4 med 3.
x=\frac{-\left(-8\right)±\sqrt{52}}{2}
Addera 64 till -12.
x=\frac{-\left(-8\right)±2\sqrt{13}}{2}
Dra kvadratroten ur 52.
x=\frac{8±2\sqrt{13}}{2}
Motsatsen till -8 är 8.
x=\frac{2\sqrt{13}+8}{2}
Lös nu ekvationen x=\frac{8±2\sqrt{13}}{2} när ± är plus. Addera 8 till 2\sqrt{13}.
x=\sqrt{13}+4
Dela 8+2\sqrt{13} med 2.
x=\frac{8-2\sqrt{13}}{2}
Lös nu ekvationen x=\frac{8±2\sqrt{13}}{2} när ± är minus. Subtrahera 2\sqrt{13} från 8.
x=4-\sqrt{13}
Dela 8-2\sqrt{13} med 2.
x=\sqrt{13}+4 x=4-\sqrt{13}
Ekvationen har lösts.
x^{2}+3-8x=0
Subtrahera 8x från båda led.
x^{2}-8x=-3
Subtrahera 3 från båda led. Allt subtraherat från noll blir sin negation.
x^{2}-8x+\left(-4\right)^{2}=-3+\left(-4\right)^{2}
Dividera -8, koefficienten för termen x, med 2 för att få -4. Addera sedan kvadraten av -4 till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-8x+16=-3+16
Kvadrera -4.
x^{2}-8x+16=13
Addera -3 till 16.
\left(x-4\right)^{2}=13
Faktorisera x^{2}-8x+16. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-4\right)^{2}}=\sqrt{13}
Dra kvadratroten ur båda ekvationsled.
x-4=\sqrt{13} x-4=-\sqrt{13}
Förenkla.
x=\sqrt{13}+4 x=4-\sqrt{13}
Addera 4 till båda ekvationsled.