Lös ut a
\left\{\begin{matrix}a=\frac{r}{\cos(\theta )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\\a\in \mathrm{R}\text{, }&r=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\end{matrix}\right,
Lös ut r
r=a\cos(\theta )
Graf
Aktie
Kopieras till Urklipp
a\cos(\theta )=r
Byt plats på leden så att alla variabeltermer är till vänster.
\cos(\theta )a=r
Ekvationen är på standardform.
\frac{\cos(\theta )a}{\cos(\theta )}=\frac{r}{\cos(\theta )}
Dividera båda led med \cos(\theta ).
a=\frac{r}{\cos(\theta )}
Division med \cos(\theta ) tar ut multiplikationen med \cos(\theta ).
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}