Hoppa till huvudinnehåll
Lös ut n
Tick mark Image

Liknande problem från webbsökning

Aktie

n^{2}+2n-1=6
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
n^{2}+2n-1-6=6-6
Subtrahera 6 från båda ekvationsled.
n^{2}+2n-1-6=0
Subtraktion av 6 från sig självt ger 0 som resultat.
n^{2}+2n-7=0
Subtrahera 6 från -1.
n=\frac{-2±\sqrt{2^{2}-4\left(-7\right)}}{2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 1, b med 2 och c med -7 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-2±\sqrt{4-4\left(-7\right)}}{2}
Kvadrera 2.
n=\frac{-2±\sqrt{4+28}}{2}
Multiplicera -4 med -7.
n=\frac{-2±\sqrt{32}}{2}
Addera 4 till 28.
n=\frac{-2±4\sqrt{2}}{2}
Dra kvadratroten ur 32.
n=\frac{4\sqrt{2}-2}{2}
Lös nu ekvationen n=\frac{-2±4\sqrt{2}}{2} när ± är plus. Addera -2 till 4\sqrt{2}.
n=2\sqrt{2}-1
Dela 4\sqrt{2}-2 med 2.
n=\frac{-4\sqrt{2}-2}{2}
Lös nu ekvationen n=\frac{-2±4\sqrt{2}}{2} när ± är minus. Subtrahera 4\sqrt{2} från -2.
n=-2\sqrt{2}-1
Dela -2-4\sqrt{2} med 2.
n=2\sqrt{2}-1 n=-2\sqrt{2}-1
Ekvationen har lösts.
n^{2}+2n-1=6
Andragradsekvationer som den här kan lösas med hjälp av kvadratkomplettering. För kvadratkomplettering måste ekvationen först skrivas om på formen x^{2}+bx=c.
n^{2}+2n-1-\left(-1\right)=6-\left(-1\right)
Addera 1 till båda ekvationsled.
n^{2}+2n=6-\left(-1\right)
Subtraktion av -1 från sig självt ger 0 som resultat.
n^{2}+2n=7
Subtrahera -1 från 6.
n^{2}+2n+1^{2}=7+1^{2}
Dividera 2, koefficienten för termen x, med 2 för att få 1. Addera sedan kvadraten av 1 till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
n^{2}+2n+1=7+1
Kvadrera 1.
n^{2}+2n+1=8
Addera 7 till 1.
\left(n+1\right)^{2}=8
Faktorisera n^{2}+2n+1. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(n+1\right)^{2}}=\sqrt{8}
Dra kvadratroten ur båda ekvationsled.
n+1=2\sqrt{2} n+1=-2\sqrt{2}
Förenkla.
n=2\sqrt{2}-1 n=-2\sqrt{2}-1
Subtrahera 1 från båda ekvationsled.