Hoppa till huvudinnehåll
Faktorisera
Tick mark Image
Beräkna
Tick mark Image

Liknande problem från webbsökning

Aktie

\left(k^{45}+1\right)\left(k^{90}-k^{45}+1\right)
Skriv om k^{135}+1 som \left(k^{45}\right)^{3}+1^{3}. Summan av kuberna kan faktors med regeln: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k^{15}+1\right)\left(k^{30}-k^{15}+1\right)
Överväg k^{45}+1. Skriv om k^{45}+1 som \left(k^{15}\right)^{3}+1^{3}. Summan av kuberna kan faktors med regeln: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k^{5}+1\right)\left(k^{10}-k^{5}+1\right)
Överväg k^{15}+1. Skriv om k^{15}+1 som \left(k^{5}\right)^{3}+1^{3}. Summan av kuberna kan faktors med regeln: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k+1\right)\left(k^{4}-k^{3}+k^{2}-k+1\right)
Överväg k^{5}+1. Av rationella rot Binomialsatsen är alla rationella rötter till en polynom i form \frac{p}{q}, där p delar upp konstanten 1 och q delar upp den inledande koefficienten 1. En sådan rot är -1. Faktor polynomet genom att dela den med k+1.
\left(k^{4}-k^{3}+k^{2}-k+1\right)\left(k+1\right)\left(k^{10}-k^{5}+1\right)\left(k^{30}-k^{15}+1\right)\left(k^{90}-k^{45}+1\right)
Skriv om det fullständiga faktoriserade uttrycket. Följande polynomer är inte faktorer eftersom de inte har några rationella rötter: k^{4}-k^{3}+k^{2}-k+1,k^{10}-k^{5}+1,k^{30}-k^{15}+1,k^{90}-k^{45}+1.