Hoppa till huvudinnehåll
Faktorisera
Tick mark Image
Beräkna
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

a+b=-8 ab=1\times 7=7
Faktorisera uttrycket genom gruppering. Först måste uttrycket skrivas om som x^{2}+ax+bx+7. Konfigurera ett system som ska lösas om du vill söka efter a och b.
a=-7 b=-1
Eftersom ab är positivt a och b ha samma tecken. Eftersom a+b är negativt är a och b negativa. Det enda sådana paret är systemlösningen.
\left(x^{2}-7x\right)+\left(-x+7\right)
Skriv om x^{2}-8x+7 som \left(x^{2}-7x\right)+\left(-x+7\right).
x\left(x-7\right)-\left(x-7\right)
Utfaktor x i den första och den -1 i den andra gruppen.
\left(x-7\right)\left(x-1\right)
Bryt ut den gemensamma termen x-7 genom att använda distributivitet.
x^{2}-8x+7=0
Ett kvadratisk polynom kan faktoriseras med transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), där x_{1} och x_{2} är lösningarna för andragradsekvationen ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
Kvadrera -8.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
Multiplicera -4 med 7.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
Addera 64 till -28.
x=\frac{-\left(-8\right)±6}{2}
Dra kvadratroten ur 36.
x=\frac{8±6}{2}
Motsatsen till -8 är 8.
x=\frac{14}{2}
Lös nu ekvationen x=\frac{8±6}{2} när ± är plus. Addera 8 till 6.
x=7
Dela 14 med 2.
x=\frac{2}{2}
Lös nu ekvationen x=\frac{8±6}{2} när ± är minus. Subtrahera 6 från 8.
x=1
Dela 2 med 2.
x^{2}-8x+7=\left(x-7\right)\left(x-1\right)
Faktorisera det ursprungliga uttrycket med ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Ersätt x_{1} med 7 och x_{2} med 1.