Beräkna
\frac{x^{3}+x+1}{x^{2}+1}
Derivera m.a.p. x
\frac{x^{4}+2x^{2}-2x+1}{\left(x^{2}+1\right)^{2}}
Graf
Aktie
Kopieras till Urklipp
\frac{x\left(x^{2}+1\right)}{x^{2}+1}+\frac{1}{x^{2}+1}
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Multiplicera x med \frac{x^{2}+1}{x^{2}+1}.
\frac{x\left(x^{2}+1\right)+1}{x^{2}+1}
Eftersom \frac{x\left(x^{2}+1\right)}{x^{2}+1} och \frac{1}{x^{2}+1} har samma nämnare adderar du dem genom att addera deras täljare.
\frac{x^{3}+x+1}{x^{2}+1}
Gör multiplikationerna i x\left(x^{2}+1\right)+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x^{2}+1\right)}{x^{2}+1}+\frac{1}{x^{2}+1})
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Multiplicera x med \frac{x^{2}+1}{x^{2}+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x^{2}+1\right)+1}{x^{2}+1})
Eftersom \frac{x\left(x^{2}+1\right)}{x^{2}+1} och \frac{1}{x^{2}+1} har samma nämnare adderar du dem genom att addera deras täljare.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}+x+1}{x^{2}+1})
Gör multiplikationerna i x\left(x^{2}+1\right)+1.
\frac{\left(x^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}+x^{1}+1)-\left(x^{3}+x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+1)}{\left(x^{2}+1\right)^{2}}
För två differentierbara funktioner är derivatan av kvoten av de två funktionerna nämnaren multiplicerat med täljarens derivata minus täljaren multiplicerat med nämnarens derivata, allt dividerat med nämnaren i kvadrat.
\frac{\left(x^{2}+1\right)\left(3x^{3-1}+x^{1-1}\right)-\left(x^{3}+x^{1}+1\right)\times 2x^{2-1}}{\left(x^{2}+1\right)^{2}}
Derivatan av ett polynom är lika med summan av derivatorna av polynomets termer. Derivatan för en konstant term är 0. Derivatan av ax^{n} är nax^{n-1}.
\frac{\left(x^{2}+1\right)\left(3x^{2}+x^{0}\right)-\left(x^{3}+x^{1}+1\right)\times 2x^{1}}{\left(x^{2}+1\right)^{2}}
Förenkla.
\frac{x^{2}\times 3x^{2}+x^{2}x^{0}+3x^{2}+x^{0}-\left(x^{3}+x^{1}+1\right)\times 2x^{1}}{\left(x^{2}+1\right)^{2}}
Multiplicera x^{2}+1 med 3x^{2}+x^{0}.
\frac{x^{2}\times 3x^{2}+x^{2}x^{0}+3x^{2}+x^{0}-\left(x^{3}\times 2x^{1}+x^{1}\times 2x^{1}+2x^{1}\right)}{\left(x^{2}+1\right)^{2}}
Multiplicera x^{3}+x^{1}+1 med 2x^{1}.
\frac{3x^{2+2}+x^{2}+3x^{2}+x^{0}-\left(2x^{3+1}+2x^{1+1}+2x^{1}\right)}{\left(x^{2}+1\right)^{2}}
Du multiplicerar potenser med samma bas genom att addera deras exponenter.
\frac{3x^{4}+x^{2}+3x^{2}+x^{0}-\left(2x^{4}+2x^{2}+2x^{1}\right)}{\left(x^{2}+1\right)^{2}}
Förenkla.
\frac{x^{4}-x^{2}+3x^{2}+x^{0}-2x^{1}}{\left(x^{2}+1\right)^{2}}
Slå ihop lika termer.
\frac{x^{4}-x^{2}+3x^{2}+x^{0}-2x}{\left(x^{2}+1\right)^{2}}
För alla termer t, t^{1}=t.
\frac{x^{4}-x^{2}+3x^{2}+1-2x}{\left(x^{2}+1\right)^{2}}
För alla termer t utom 0, t^{0}=1.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}