Hoppa till huvudinnehåll
Lös ut a (complex solution)
Tick mark Image
Lös ut b (complex solution)
Tick mark Image
Lös ut a
Tick mark Image
Lös ut b
Tick mark Image

Liknande problem från webbsökning

Aktie

\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Multiplicera båda ekvationsled med \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Använd binomialsatsen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} för att expandera \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Om du vill upphöja ett tal till ett annat upphöjt tal multiplicerar du exponenterna. Multiplicera 2 och 2 för att få 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Använd den distributiva egenskapen för att multiplicera \frac{\mathrm{d}}{\mathrm{d}x}(f)x med x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Byt plats på leden så att alla variabeltermer är till vänster.
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
Lägg till 2bx på båda sidorna.
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Ordna om termerna.
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Slå ihop alla termer som innehåller a.
\left(c-x^{2}\right)a=2bx
Ekvationen är på standardform.
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
Dividera båda led med -x^{2}+c.
a=\frac{2bx}{c-x^{2}}
Division med -x^{2}+c tar ut multiplikationen med -x^{2}+c.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Multiplicera båda ekvationsled med \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Använd binomialsatsen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} för att expandera \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Om du vill upphöja ett tal till ett annat upphöjt tal multiplicerar du exponenterna. Multiplicera 2 och 2 för att få 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Använd den distributiva egenskapen för att multiplicera \frac{\mathrm{d}}{\mathrm{d}x}(f)x med x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Byt plats på leden så att alla variabeltermer är till vänster.
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
Subtrahera \left(-a\right)x^{2} från båda led.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
Subtrahera ac från båda led.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
Multiplicera -1 och -1 för att få 1.
\left(-2x\right)b=ax^{2}-ac
Ekvationen är på standardform.
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
Dividera båda led med -2x.
b=\frac{a\left(x^{2}-c\right)}{-2x}
Division med -2x tar ut multiplikationen med -2x.
b=-\frac{ax}{2}+\frac{ac}{2x}
Dela a\left(x^{2}-c\right) med -2x.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Multiplicera båda ekvationsled med \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Använd binomialsatsen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} för att expandera \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Om du vill upphöja ett tal till ett annat upphöjt tal multiplicerar du exponenterna. Multiplicera 2 och 2 för att få 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Använd den distributiva egenskapen för att multiplicera \frac{\mathrm{d}}{\mathrm{d}x}(f)x med x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Byt plats på leden så att alla variabeltermer är till vänster.
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
Lägg till 2bx på båda sidorna.
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Ordna om termerna.
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Slå ihop alla termer som innehåller a.
\left(c-x^{2}\right)a=2bx
Ekvationen är på standardform.
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
Dividera båda led med -x^{2}+c.
a=\frac{2bx}{c-x^{2}}
Division med -x^{2}+c tar ut multiplikationen med -x^{2}+c.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Multiplicera båda ekvationsled med \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Använd binomialsatsen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} för att expandera \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Om du vill upphöja ett tal till ett annat upphöjt tal multiplicerar du exponenterna. Multiplicera 2 och 2 för att få 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Använd den distributiva egenskapen för att multiplicera \frac{\mathrm{d}}{\mathrm{d}x}(f)x med x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Byt plats på leden så att alla variabeltermer är till vänster.
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
Subtrahera \left(-a\right)x^{2} från båda led.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
Subtrahera ac från båda led.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
Multiplicera -1 och -1 för att få 1.
\left(-2x\right)b=ax^{2}-ac
Ekvationen är på standardform.
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
Dividera båda led med -2x.
b=\frac{a\left(x^{2}-c\right)}{-2x}
Division med -2x tar ut multiplikationen med -2x.
b=-\frac{ax}{2}+\frac{ac}{2x}
Dela a\left(x^{2}-c\right) med -2x.