Hoppa till huvudinnehåll
Faktorisera
Tick mark Image
Beräkna
Tick mark Image

Liknande problem från webbsökning

Aktie

p+q=-4 pq=1\left(-12\right)=-12
Faktorisera uttrycket genom gruppering. Först måste uttrycket skrivas om som a^{2}+pa+qa-12. Konfigurera ett system som ska lösas om du vill söka efter p och q.
1,-12 2,-6 3,-4
Eftersom pq är negativt p och q har motsatta tecken. Eftersom p+q är negativt har det negativa talet större absolut värde än det positiva. Lista alla sådana heltalspar som ger produkten -12.
1-12=-11 2-6=-4 3-4=-1
Beräkna summan för varje par.
p=-6 q=2
Lösningen är det par som ger Summa -4.
\left(a^{2}-6a\right)+\left(2a-12\right)
Skriv om a^{2}-4a-12 som \left(a^{2}-6a\right)+\left(2a-12\right).
a\left(a-6\right)+2\left(a-6\right)
Utfaktor a i den första och den 2 i den andra gruppen.
\left(a-6\right)\left(a+2\right)
Bryt ut den gemensamma termen a-6 genom att använda distributivitet.
a^{2}-4a-12=0
Ett kvadratisk polynom kan faktoriseras med transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), där x_{1} och x_{2} är lösningarna för andragradsekvationen ax^{2}+bx+c=0.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
a=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Kvadrera -4.
a=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Multiplicera -4 med -12.
a=\frac{-\left(-4\right)±\sqrt{64}}{2}
Addera 16 till 48.
a=\frac{-\left(-4\right)±8}{2}
Dra kvadratroten ur 64.
a=\frac{4±8}{2}
Motsatsen till -4 är 4.
a=\frac{12}{2}
Lös nu ekvationen a=\frac{4±8}{2} när ± är plus. Addera 4 till 8.
a=6
Dela 12 med 2.
a=-\frac{4}{2}
Lös nu ekvationen a=\frac{4±8}{2} när ± är minus. Subtrahera 8 från 4.
a=-2
Dela -4 med 2.
a^{2}-4a-12=\left(a-6\right)\left(a-\left(-2\right)\right)
Faktorisera det ursprungliga uttrycket med ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Ersätt x_{1} med 6 och x_{2} med -2.
a^{2}-4a-12=\left(a-6\right)\left(a+2\right)
Förenkla alla uttryck på formen p-\left(-q\right) till p+q.