Lös ut x
x = -\frac{3}{2} = -1\frac{1}{2} = -1,5
x=3
Graf
Aktie
Kopieras till Urklipp
2x^{2}-3x=9
Byt plats på leden så att alla variabeltermer är till vänster.
2x^{2}-3x-9=0
Subtrahera 9 från båda led.
a+b=-3 ab=2\left(-9\right)=-18
För att lösa ekvationen kan du faktor den vänstra delen med hjälp av gruppering. Första, vänstra sidan måste skrivas om som 2x^{2}+ax+bx-9. Konfigurera ett system som ska lösas om du vill söka efter a och b.
1,-18 2,-9 3,-6
Eftersom ab är negativt a och b har motsatta tecken. Eftersom a+b är negativt har det negativa talet större absolut värde än det positiva. Lista alla sådana heltalspar som ger produkten -18.
1-18=-17 2-9=-7 3-6=-3
Beräkna summan för varje par.
a=-6 b=3
Lösningen är det par som ger Summa -3.
\left(2x^{2}-6x\right)+\left(3x-9\right)
Skriv om 2x^{2}-3x-9 som \left(2x^{2}-6x\right)+\left(3x-9\right).
2x\left(x-3\right)+3\left(x-3\right)
Utfaktor 2x i den första och den 3 i den andra gruppen.
\left(x-3\right)\left(2x+3\right)
Bryt ut den gemensamma termen x-3 genom att använda distributivitet.
x=3 x=-\frac{3}{2}
Lös x-3=0 och 2x+3=0 om du vill hitta ekvations lösningar.
2x^{2}-3x=9
Byt plats på leden så att alla variabeltermer är till vänster.
2x^{2}-3x-9=0
Subtrahera 9 från båda led.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-9\right)}}{2\times 2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 2, b med -3 och c med -9 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-9\right)}}{2\times 2}
Kvadrera -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-9\right)}}{2\times 2}
Multiplicera -4 med 2.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\times 2}
Multiplicera -8 med -9.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\times 2}
Addera 9 till 72.
x=\frac{-\left(-3\right)±9}{2\times 2}
Dra kvadratroten ur 81.
x=\frac{3±9}{2\times 2}
Motsatsen till -3 är 3.
x=\frac{3±9}{4}
Multiplicera 2 med 2.
x=\frac{12}{4}
Lös nu ekvationen x=\frac{3±9}{4} när ± är plus. Addera 3 till 9.
x=3
Dela 12 med 4.
x=-\frac{6}{4}
Lös nu ekvationen x=\frac{3±9}{4} när ± är minus. Subtrahera 9 från 3.
x=-\frac{3}{2}
Minska bråktalet \frac{-6}{4} till de lägsta termerna genom att extrahera och eliminera 2.
x=3 x=-\frac{3}{2}
Ekvationen har lösts.
2x^{2}-3x=9
Byt plats på leden så att alla variabeltermer är till vänster.
\frac{2x^{2}-3x}{2}=\frac{9}{2}
Dividera båda led med 2.
x^{2}-\frac{3}{2}x=\frac{9}{2}
Division med 2 tar ut multiplikationen med 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{9}{2}+\left(-\frac{3}{4}\right)^{2}
Dividera -\frac{3}{2}, koefficienten för termen x, med 2 för att få -\frac{3}{4}. Addera sedan kvadraten av -\frac{3}{4} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{9}{2}+\frac{9}{16}
Kvadrera -\frac{3}{4} genom att kvadrera både täljaren och nämnaren i bråktalet.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{81}{16}
Addera \frac{9}{2} till \frac{9}{16} genom att hitta en gemensam nämnare och sedan addera täljarna. Förkorta sedan bråktalet till lägsta term om det går.
\left(x-\frac{3}{4}\right)^{2}=\frac{81}{16}
Faktorisera x^{2}-\frac{3}{2}x+\frac{9}{16}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Dra kvadratroten ur båda ekvationsled.
x-\frac{3}{4}=\frac{9}{4} x-\frac{3}{4}=-\frac{9}{4}
Förenkla.
x=3 x=-\frac{3}{2}
Addera \frac{3}{4} till båda ekvationsled.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}