Lös ut y
y=\frac{1}{3^{x}}
Lös ut x (complex solution)
x=-\log_{3}\left(y\right)+\frac{2\pi n_{1}i}{\ln(3)}
n_{1}\in \mathrm{Z}
y\neq 0
Lös ut x
x=-\log_{3}\left(y\right)
y>0
Graf
Aktie
Kopieras till Urklipp
9=y\times 3^{x+2}
Variabeln y får inte vara lika med 0 eftersom division med noll inte har definierats. Multiplicera båda ekvationsled med y.
y\times 3^{x+2}=9
Byt plats på leden så att alla variabeltermer är till vänster.
3^{x+2}y=9
Ekvationen är på standardform.
\frac{3^{x+2}y}{3^{x+2}}=\frac{9}{3^{x+2}}
Dividera båda led med 3^{x+2}.
y=\frac{9}{3^{x+2}}
Division med 3^{x+2} tar ut multiplikationen med 3^{x+2}.
y=\frac{1}{3^{x}}
Dela 9 med 3^{x+2}.
y=\frac{1}{3^{x}}\text{, }y\neq 0
Variabeln y får inte vara lika med 0.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}