Hoppa till huvudinnehåll
Lös ut x (complex solution)
Tick mark Image
Lös ut x
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Av rationella rot Binomialsatsen är alla rationella rötter till en polynom i form \frac{p}{q}, där p delar upp konstanten 729 och q delar upp den inledande koefficienten 64. Visa en lista över alla kandidater \frac{p}{q}.
x=-\frac{9}{4}
Hitta en sådan rot genom att testa alla heltalsvärden, med början från det minsta efter absolut värde. Om inga heltalsrötter hittas kan du försöka med bråktal.
16x^{2}-36x+81=0
Enligt faktor Binomialsatsen är x-k faktorn för varje rot k. Dividera 64x^{3}+729 med 4\left(x+\frac{9}{4}\right)=4x+9 för att få 16x^{2}-36x+81. Lös ekvationen där resultatet är lika med 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ersätt 16 med a, -36 med b och 81 med c i lösningsformeln.
x=\frac{36±\sqrt{-3888}}{32}
Gör beräkningarna.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Lös ekvationen 16x^{2}-36x+81=0 när ± är plus och när ± är minus.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Visa alla lösningar som hittades.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Av rationella rot Binomialsatsen är alla rationella rötter till en polynom i form \frac{p}{q}, där p delar upp konstanten 729 och q delar upp den inledande koefficienten 64. Visa en lista över alla kandidater \frac{p}{q}.
x=-\frac{9}{4}
Hitta en sådan rot genom att testa alla heltalsvärden, med början från det minsta efter absolut värde. Om inga heltalsrötter hittas kan du försöka med bråktal.
16x^{2}-36x+81=0
Enligt faktor Binomialsatsen är x-k faktorn för varje rot k. Dividera 64x^{3}+729 med 4\left(x+\frac{9}{4}\right)=4x+9 för att få 16x^{2}-36x+81. Lös ekvationen där resultatet är lika med 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ersätt 16 med a, -36 med b och 81 med c i lösningsformeln.
x=\frac{36±\sqrt{-3888}}{32}
Gör beräkningarna.
x\in \emptyset
Eftersom kvadratroten ur ett negativt tal inte är definierad bland reella tal, finns det inga lösningar.
x=-\frac{9}{4}
Visa alla lösningar som hittades.