Lös ut x
x=-1
x=\frac{2}{5}=0,4
Graf
Aktie
Kopieras till Urklipp
5x^{2}-7x-6+10x=-4
Lägg till 10x på båda sidorna.
5x^{2}+3x-6=-4
Slå ihop -7x och 10x för att få 3x.
5x^{2}+3x-6+4=0
Lägg till 4 på båda sidorna.
5x^{2}+3x-2=0
Addera -6 och 4 för att få -2.
a+b=3 ab=5\left(-2\right)=-10
För att lösa ekvationen kan du faktor den vänstra delen med hjälp av gruppering. Första, vänstra sidan måste skrivas om som 5x^{2}+ax+bx-2. Konfigurera ett system som ska lösas om du vill söka efter a och b.
-1,10 -2,5
Eftersom ab är negativt a och b har motsatta tecken. Eftersom a+b är positivt har det positiva talet större absolut värde än det negativa. Lista alla sådana heltalspar som ger produkten -10.
-1+10=9 -2+5=3
Beräkna summan för varje par.
a=-2 b=5
Lösningen är det par som ger Summa 3.
\left(5x^{2}-2x\right)+\left(5x-2\right)
Skriv om 5x^{2}+3x-2 som \left(5x^{2}-2x\right)+\left(5x-2\right).
x\left(5x-2\right)+5x-2
Bryt ut x i 5x^{2}-2x.
\left(5x-2\right)\left(x+1\right)
Bryt ut den gemensamma termen 5x-2 genom att använda distributivitet.
x=\frac{2}{5} x=-1
Lös 5x-2=0 och x+1=0 om du vill hitta ekvations lösningar.
5x^{2}-7x-6+10x=-4
Lägg till 10x på båda sidorna.
5x^{2}+3x-6=-4
Slå ihop -7x och 10x för att få 3x.
5x^{2}+3x-6+4=0
Lägg till 4 på båda sidorna.
5x^{2}+3x-2=0
Addera -6 och 4 för att få -2.
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-2\right)}}{2\times 5}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 5, b med 3 och c med -2 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 5\left(-2\right)}}{2\times 5}
Kvadrera 3.
x=\frac{-3±\sqrt{9-20\left(-2\right)}}{2\times 5}
Multiplicera -4 med 5.
x=\frac{-3±\sqrt{9+40}}{2\times 5}
Multiplicera -20 med -2.
x=\frac{-3±\sqrt{49}}{2\times 5}
Addera 9 till 40.
x=\frac{-3±7}{2\times 5}
Dra kvadratroten ur 49.
x=\frac{-3±7}{10}
Multiplicera 2 med 5.
x=\frac{4}{10}
Lös nu ekvationen x=\frac{-3±7}{10} när ± är plus. Addera -3 till 7.
x=\frac{2}{5}
Minska bråktalet \frac{4}{10} till de lägsta termerna genom att extrahera och eliminera 2.
x=-\frac{10}{10}
Lös nu ekvationen x=\frac{-3±7}{10} när ± är minus. Subtrahera 7 från -3.
x=-1
Dela -10 med 10.
x=\frac{2}{5} x=-1
Ekvationen har lösts.
5x^{2}-7x-6+10x=-4
Lägg till 10x på båda sidorna.
5x^{2}+3x-6=-4
Slå ihop -7x och 10x för att få 3x.
5x^{2}+3x=-4+6
Lägg till 6 på båda sidorna.
5x^{2}+3x=2
Addera -4 och 6 för att få 2.
\frac{5x^{2}+3x}{5}=\frac{2}{5}
Dividera båda led med 5.
x^{2}+\frac{3}{5}x=\frac{2}{5}
Division med 5 tar ut multiplikationen med 5.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=\frac{2}{5}+\left(\frac{3}{10}\right)^{2}
Dividera \frac{3}{5}, koefficienten för termen x, med 2 för att få \frac{3}{10}. Addera sedan kvadraten av \frac{3}{10} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{2}{5}+\frac{9}{100}
Kvadrera \frac{3}{10} genom att kvadrera både täljaren och nämnaren i bråktalet.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{49}{100}
Addera \frac{2}{5} till \frac{9}{100} genom att hitta en gemensam nämnare och sedan addera täljarna. Förkorta sedan bråktalet till lägsta term om det går.
\left(x+\frac{3}{10}\right)^{2}=\frac{49}{100}
Faktorisera x^{2}+\frac{3}{5}x+\frac{9}{100}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{49}{100}}
Dra kvadratroten ur båda ekvationsled.
x+\frac{3}{10}=\frac{7}{10} x+\frac{3}{10}=-\frac{7}{10}
Förenkla.
x=\frac{2}{5} x=-1
Subtrahera \frac{3}{10} från båda ekvationsled.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}