Hoppa till huvudinnehåll
Lös ut x
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

3x^{2}-15x=0
Subtrahera 15x från båda led.
x\left(3x-15\right)=0
Bryt ut x.
x=0 x=5
Lös x=0 och 3x-15=0 om du vill hitta ekvations lösningar.
3x^{2}-15x=0
Subtrahera 15x från båda led.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2\times 3}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 3, b med -15 och c med 0 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±15}{2\times 3}
Dra kvadratroten ur \left(-15\right)^{2}.
x=\frac{15±15}{2\times 3}
Motsatsen till -15 är 15.
x=\frac{15±15}{6}
Multiplicera 2 med 3.
x=\frac{30}{6}
Lös nu ekvationen x=\frac{15±15}{6} när ± är plus. Addera 15 till 15.
x=5
Dela 30 med 6.
x=\frac{0}{6}
Lös nu ekvationen x=\frac{15±15}{6} när ± är minus. Subtrahera 15 från 15.
x=0
Dela 0 med 6.
x=5 x=0
Ekvationen har lösts.
3x^{2}-15x=0
Subtrahera 15x från båda led.
\frac{3x^{2}-15x}{3}=\frac{0}{3}
Dividera båda led med 3.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{0}{3}
Division med 3 tar ut multiplikationen med 3.
x^{2}-5x=\frac{0}{3}
Dela -15 med 3.
x^{2}-5x=0
Dela 0 med 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Dividera -5, koefficienten för termen x, med 2 för att få -\frac{5}{2}. Addera sedan kvadraten av -\frac{5}{2} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Kvadrera -\frac{5}{2} genom att kvadrera både täljaren och nämnaren i bråktalet.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Faktorisera x^{2}-5x+\frac{25}{4}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Dra kvadratroten ur båda ekvationsled.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Förenkla.
x=5 x=0
Addera \frac{5}{2} till båda ekvationsled.