Hoppa till huvudinnehåll
Lös ut x
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

x\left(3x-7\right)=0
Bryt ut x.
x=0 x=\frac{7}{3}
Lös x=0 och 3x-7=0 om du vill hitta ekvations lösningar.
3x^{2}-7x=0
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}}}{2\times 3}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 3, b med -7 och c med 0 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±7}{2\times 3}
Dra kvadratroten ur \left(-7\right)^{2}.
x=\frac{7±7}{2\times 3}
Motsatsen till -7 är 7.
x=\frac{7±7}{6}
Multiplicera 2 med 3.
x=\frac{14}{6}
Lös nu ekvationen x=\frac{7±7}{6} när ± är plus. Addera 7 till 7.
x=\frac{7}{3}
Minska bråktalet \frac{14}{6} till de lägsta termerna genom att extrahera och eliminera 2.
x=\frac{0}{6}
Lös nu ekvationen x=\frac{7±7}{6} när ± är minus. Subtrahera 7 från 7.
x=0
Dela 0 med 6.
x=\frac{7}{3} x=0
Ekvationen har lösts.
3x^{2}-7x=0
Andragradsekvationer som den här kan lösas med hjälp av kvadratkomplettering. För kvadratkomplettering måste ekvationen först skrivas om på formen x^{2}+bx=c.
\frac{3x^{2}-7x}{3}=\frac{0}{3}
Dividera båda led med 3.
x^{2}-\frac{7}{3}x=\frac{0}{3}
Division med 3 tar ut multiplikationen med 3.
x^{2}-\frac{7}{3}x=0
Dela 0 med 3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=\left(-\frac{7}{6}\right)^{2}
Dividera -\frac{7}{3}, koefficienten för termen x, med 2 för att få -\frac{7}{6}. Addera sedan kvadraten av -\frac{7}{6} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{49}{36}
Kvadrera -\frac{7}{6} genom att kvadrera både täljaren och nämnaren i bråktalet.
\left(x-\frac{7}{6}\right)^{2}=\frac{49}{36}
Faktorisera x^{2}-\frac{7}{3}x+\frac{49}{36}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Dra kvadratroten ur båda ekvationsled.
x-\frac{7}{6}=\frac{7}{6} x-\frac{7}{6}=-\frac{7}{6}
Förenkla.
x=\frac{7}{3} x=0
Addera \frac{7}{6} till båda ekvationsled.