Lös ut x (complex solution)
x=\frac{1+\sqrt{31}i}{4}\approx 0,25+1,391941091i
x=\frac{-\sqrt{31}i+1}{4}\approx 0,25-1,391941091i
Graf
Aktie
Kopieras till Urklipp
2x^{2}-x=-4
Subtrahera x från båda led.
2x^{2}-x+4=0
Lägg till 4 på båda sidorna.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\times 4}}{2\times 2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 2, b med -1 och c med 4 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\times 4}}{2\times 2}
Multiplicera -4 med 2.
x=\frac{-\left(-1\right)±\sqrt{1-32}}{2\times 2}
Multiplicera -8 med 4.
x=\frac{-\left(-1\right)±\sqrt{-31}}{2\times 2}
Addera 1 till -32.
x=\frac{-\left(-1\right)±\sqrt{31}i}{2\times 2}
Dra kvadratroten ur -31.
x=\frac{1±\sqrt{31}i}{2\times 2}
Motsatsen till -1 är 1.
x=\frac{1±\sqrt{31}i}{4}
Multiplicera 2 med 2.
x=\frac{1+\sqrt{31}i}{4}
Lös nu ekvationen x=\frac{1±\sqrt{31}i}{4} när ± är plus. Addera 1 till i\sqrt{31}.
x=\frac{-\sqrt{31}i+1}{4}
Lös nu ekvationen x=\frac{1±\sqrt{31}i}{4} när ± är minus. Subtrahera i\sqrt{31} från 1.
x=\frac{1+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i+1}{4}
Ekvationen har lösts.
2x^{2}-x=-4
Subtrahera x från båda led.
\frac{2x^{2}-x}{2}=-\frac{4}{2}
Dividera båda led med 2.
x^{2}-\frac{1}{2}x=-\frac{4}{2}
Division med 2 tar ut multiplikationen med 2.
x^{2}-\frac{1}{2}x=-2
Dela -4 med 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-2+\left(-\frac{1}{4}\right)^{2}
Dividera -\frac{1}{2}, koefficienten för termen x, med 2 för att få -\frac{1}{4}. Addera sedan kvadraten av -\frac{1}{4} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-2+\frac{1}{16}
Kvadrera -\frac{1}{4} genom att kvadrera både täljaren och nämnaren i bråktalet.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{31}{16}
Addera -2 till \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=-\frac{31}{16}
Faktorisera x^{2}-\frac{1}{2}x+\frac{1}{16}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{31}{16}}
Dra kvadratroten ur båda ekvationsled.
x-\frac{1}{4}=\frac{\sqrt{31}i}{4} x-\frac{1}{4}=-\frac{\sqrt{31}i}{4}
Förenkla.
x=\frac{1+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i+1}{4}
Addera \frac{1}{4} till båda ekvationsled.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}