Lös ut n
n=\frac{\ln(\frac{-i\ln(x)-i\ln(y)+\ln(2)\left(8+i\right)}{\ln(2)})-3\ln(2)}{\ln(2)}+\frac{2\pi n_{1}i}{\ln(2)}
n_{1}\in \mathrm{Z}
\left(Im(\ln(y))+Im(\ln(\frac{2^{1-8i}}{y}))+8\ln(2)\neq 0\text{ and }x\neq 0\text{ and }y\neq 0\text{ and }Im(\ln(y))+Im(\ln(\frac{2^{1-8i}}{y}))\neq -8\ln(2)\right)\text{ or }\left(x\neq \frac{2^{1-8i}}{y}\text{ and }x\neq 0\text{ and }y\neq 0\right)
Lös ut x
x=\frac{2^{8i\times 2^{n}+\left(1-8i\right)}}{y}
Im(\ln(\frac{2^{8i\times 2^{n}+\left(1-8i\right)}}{y}))-8\ln(2)Re(2^{n})+Im(\ln(y))+8\ln(2)=0\text{ and }y\neq 0
Frågesport
Complex Number
5 problem som liknar:
2 ^ { n + 3 } + i \log _ { 2 } x - 8 = ( 1 - \log _ { 2 } y ) i
Aktie
Kopieras till Urklipp
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}