Faktorisera
6u\left(u-1\right)\left(2u-1\right)\left(u^{2}-u-1\right)
Beräkna
6u\left(u-1\right)\left(2u-1\right)\left(u^{2}-u-1\right)
Frågesport
Polynomial
5 problem som liknar:
12 u ^ { 5 } - 30 u ^ { 4 } + 12 u ^ { 3 } + 12 u ^ { 2 } - 6 u
Aktie
Kopieras till Urklipp
6\left(2u^{5}-5u^{4}+2u^{3}+2u^{2}-u\right)
Bryt ut 6.
u\left(2u^{4}-5u^{3}+2u^{2}+2u-1\right)
Överväg 2u^{5}-5u^{4}+2u^{3}+2u^{2}-u. Bryt ut u.
\left(2u-1\right)\left(u^{3}-2u^{2}+1\right)
Överväg 2u^{4}-5u^{3}+2u^{2}+2u-1. Av rationella rot Binomialsatsen är alla rationella rötter till en polynom i form \frac{p}{q}, där p delar upp konstanten -1 och q delar upp den inledande koefficienten 2. En sådan rot är \frac{1}{2}. Faktor polynomet genom att dela den med 2u-1.
\left(u-1\right)\left(u^{2}-u-1\right)
Överväg u^{3}-2u^{2}+1. Av rationella rot Binomialsatsen är alla rationella rötter till en polynom i form \frac{p}{q}, där p delar upp konstanten 1 och q delar upp den inledande koefficienten 1. En sådan rot är 1. Faktor polynomet genom att dela den med u-1.
6u\left(2u-1\right)\left(u-1\right)\left(u^{2}-u-1\right)
Skriv om det fullständiga faktoriserade uttrycket. Polynom u^{2}-u-1 är inte faktor eftersom den inte har några rationella rötter.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}