Lös ut V
V=0
A\neq -gm\text{ and }g\neq -\frac{A}{m}\text{ and }m\neq 0
Lös ut A
A\neq -gm
m\neq 0\text{ and }V=0
Aktie
Kopieras till Urklipp
0=\frac{V}{g+\frac{A}{m}}
Multiplicera 0 och 25 för att få 0.
0=\frac{V}{\frac{gm}{m}+\frac{A}{m}}
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Multiplicera g med \frac{m}{m}.
0=\frac{V}{\frac{gm+A}{m}}
Eftersom \frac{gm}{m} och \frac{A}{m} har samma nämnare adderar du dem genom att addera deras täljare.
0=\frac{Vm}{gm+A}
Dela V med \frac{gm+A}{m} genom att multiplicera V med reciproken till \frac{gm+A}{m}.
\frac{Vm}{gm+A}=0
Byt plats på leden så att alla variabeltermer är till vänster.
Vm=0
Multiplicera båda ekvationsled med gm+A.
mV=0
Ekvationen är på standardform.
V=0
Dela 0 med m.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}