Hoppa till huvudinnehåll
Lös ut x
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

-x^{2}+2x+3=0
Byt plats på leden så att alla variabeltermer är till vänster.
a+b=2 ab=-3=-3
För att lösa ekvationen kan du faktor den vänstra delen med hjälp av gruppering. Första, vänstra sidan måste skrivas om som -x^{2}+ax+bx+3. Konfigurera ett system som ska lösas om du vill söka efter a och b.
a=3 b=-1
Eftersom ab är negativt a och b har motsatta tecken. Eftersom a+b är positivt har det positiva talet större absolut värde än det negativa. Det enda sådana paret är systemlösningen.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Skriv om -x^{2}+2x+3 som \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Utfaktor -x i den första och den -1 i den andra gruppen.
\left(x-3\right)\left(-x-1\right)
Bryt ut den gemensamma termen x-3 genom att använda distributivitet.
x=3 x=-1
Lös x-3=0 och -x-1=0 om du vill hitta ekvations lösningar.
-x^{2}+2x+3=0
Byt plats på leden så att alla variabeltermer är till vänster.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med -1, b med 2 och c med 3 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Kvadrera 2.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Multiplicera -4 med -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Multiplicera 4 med 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Addera 4 till 12.
x=\frac{-2±4}{2\left(-1\right)}
Dra kvadratroten ur 16.
x=\frac{-2±4}{-2}
Multiplicera 2 med -1.
x=\frac{2}{-2}
Lös nu ekvationen x=\frac{-2±4}{-2} när ± är plus. Addera -2 till 4.
x=-1
Dela 2 med -2.
x=-\frac{6}{-2}
Lös nu ekvationen x=\frac{-2±4}{-2} när ± är minus. Subtrahera 4 från -2.
x=3
Dela -6 med -2.
x=-1 x=3
Ekvationen har lösts.
-x^{2}+2x+3=0
Byt plats på leden så att alla variabeltermer är till vänster.
-x^{2}+2x=-3
Subtrahera 3 från båda led. Allt subtraherat från noll blir sin negation.
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
Dividera båda led med -1.
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
Division med -1 tar ut multiplikationen med -1.
x^{2}-2x=-\frac{3}{-1}
Dela 2 med -1.
x^{2}-2x=3
Dela -3 med -1.
x^{2}-2x+1=3+1
Dividera -2, koefficienten för termen x, med 2 för att få -1. Addera sedan kvadraten av -1 till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-2x+1=4
Addera 3 till 1.
\left(x-1\right)^{2}=4
Faktorisera x^{2}-2x+1. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Dra kvadratroten ur båda ekvationsled.
x-1=2 x-1=-2
Förenkla.
x=3 x=-1
Addera 1 till båda ekvationsled.