Lös ut Δ
\Delta =-\frac{3634}{t\left(1111-49t\right)}
t\neq \frac{1111}{49}\text{ and }t\neq 0
Lös ut t (complex solution)
t=\frac{\sqrt{1234321\Delta ^{2}+712264\Delta }}{98\Delta }+\frac{1111}{98}
t=-\frac{\sqrt{1234321\Delta ^{2}+712264\Delta }}{98\Delta }+\frac{1111}{98}\text{, }\Delta \neq 0
Lös ut t
t=\frac{\sqrt{1234321\Delta ^{2}+712264\Delta }}{98\Delta }+\frac{1111}{98}
t=-\frac{\sqrt{1234321\Delta ^{2}+712264\Delta }}{98\Delta }+\frac{1111}{98}\text{, }\Delta >0\text{ or }\Delta \leq -\frac{712264}{1234321}
Aktie
Kopieras till Urklipp
1111\Delta t-49\Delta t^{2}=-3634
Byt plats på leden så att alla variabeltermer är till vänster.
\left(1111t-49t^{2}\right)\Delta =-3634
Slå ihop alla termer som innehåller \Delta .
\frac{\left(1111t-49t^{2}\right)\Delta }{1111t-49t^{2}}=-\frac{3634}{1111t-49t^{2}}
Dividera båda led med 1111t-49t^{2}.
\Delta =-\frac{3634}{1111t-49t^{2}}
Division med 1111t-49t^{2} tar ut multiplikationen med 1111t-49t^{2}.
\Delta =-\frac{3634}{t\left(1111-49t\right)}
Dela -3634 med 1111t-49t^{2}.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}