Lös ut x
x=-1
Graf
Aktie
Kopieras till Urklipp
x^{2}+2x=-1
Byt plats på leden så att alla variabeltermer är till vänster.
x^{2}+2x+1=0
Lägg till 1 på båda sidorna.
a+b=2 ab=1
För att lösa ekvationen, faktor x^{2}+2x+1 med hjälp av formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Konfigurera ett system som ska lösas om du vill söka efter a och b.
a=1 b=1
Eftersom ab är positivt a och b ha samma tecken. Eftersom a+b är positivt är a och b positiva. Det enda sådana paret är systemlösningen.
\left(x+1\right)\left(x+1\right)
Skriv om det faktoriserade uttrycket \left(x+a\right)\left(x+b\right) med hjälp av de erhållna värdena.
\left(x+1\right)^{2}
Skriv om som en binomkvadrat.
x=-1
Lös x+1=0 för att hitta ekvationslösning.
x^{2}+2x=-1
Byt plats på leden så att alla variabeltermer är till vänster.
x^{2}+2x+1=0
Lägg till 1 på båda sidorna.
a+b=2 ab=1\times 1=1
För att lösa ekvationen kan du faktor den vänstra delen med hjälp av gruppering. Första, vänstra sidan måste skrivas om som x^{2}+ax+bx+1. Konfigurera ett system som ska lösas om du vill söka efter a och b.
a=1 b=1
Eftersom ab är positivt a och b ha samma tecken. Eftersom a+b är positivt är a och b positiva. Det enda sådana paret är systemlösningen.
\left(x^{2}+x\right)+\left(x+1\right)
Skriv om x^{2}+2x+1 som \left(x^{2}+x\right)+\left(x+1\right).
x\left(x+1\right)+x+1
Bryt ut x i x^{2}+x.
\left(x+1\right)\left(x+1\right)
Bryt ut den gemensamma termen x+1 genom att använda distributivitet.
\left(x+1\right)^{2}
Skriv om som en binomkvadrat.
x=-1
Lös x+1=0 för att hitta ekvationslösning.
x^{2}+2x=-1
Byt plats på leden så att alla variabeltermer är till vänster.
x^{2}+2x+1=0
Lägg till 1 på båda sidorna.
x=\frac{-2±\sqrt{2^{2}-4}}{2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 1, b med 2 och c med 1 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4}}{2}
Kvadrera 2.
x=\frac{-2±\sqrt{0}}{2}
Addera 4 till -4.
x=-\frac{2}{2}
Dra kvadratroten ur 0.
x=-1
Dela -2 med 2.
x^{2}+2x=-1
Byt plats på leden så att alla variabeltermer är till vänster.
x^{2}+2x+1^{2}=-1+1^{2}
Dividera 2, koefficienten för termen x, med 2 för att få 1. Addera sedan kvadraten av 1 till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}+2x+1=-1+1
Kvadrera 1.
x^{2}+2x+1=0
Addera -1 till 1.
\left(x+1\right)^{2}=0
Faktorisera x^{2}+2x+1. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
Dra kvadratroten ur båda ekvationsled.
x+1=0 x+1=0
Förenkla.
x=-1 x=-1
Subtrahera 1 från båda ekvationsled.
x=-1
Ekvationen har lösts. Lösningarna är samma.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}