Lös ut x
x=-4
x=2
Graf
Aktie
Kopieras till Urklipp
x^{2}+2x-3=5
Använd den distributiva egenskapen för att multiplicera x-1 med x+3 och slå ihop lika termer.
x^{2}+2x-3-5=0
Subtrahera 5 från båda led.
x^{2}+2x-8=0
Subtrahera 5 från -3 för att få -8.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 1, b med 2 och c med -8 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
Kvadrera 2.
x=\frac{-2±\sqrt{4+32}}{2}
Multiplicera -4 med -8.
x=\frac{-2±\sqrt{36}}{2}
Addera 4 till 32.
x=\frac{-2±6}{2}
Dra kvadratroten ur 36.
x=\frac{4}{2}
Lös nu ekvationen x=\frac{-2±6}{2} när ± är plus. Addera -2 till 6.
x=2
Dela 4 med 2.
x=-\frac{8}{2}
Lös nu ekvationen x=\frac{-2±6}{2} när ± är minus. Subtrahera 6 från -2.
x=-4
Dela -8 med 2.
x=2 x=-4
Ekvationen har lösts.
x^{2}+2x-3=5
Använd den distributiva egenskapen för att multiplicera x-1 med x+3 och slå ihop lika termer.
x^{2}+2x=5+3
Lägg till 3 på båda sidorna.
x^{2}+2x=8
Addera 5 och 3 för att få 8.
x^{2}+2x+1^{2}=8+1^{2}
Dividera 2, koefficienten för termen x, med 2 för att få 1. Addera sedan kvadraten av 1 till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}+2x+1=8+1
Kvadrera 1.
x^{2}+2x+1=9
Addera 8 till 1.
\left(x+1\right)^{2}=9
Faktorisera x^{2}+2x+1. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
Dra kvadratroten ur båda ekvationsled.
x+1=3 x+1=-3
Förenkla.
x=2 x=-4
Subtrahera 1 från båda ekvationsled.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}