Lös ut x (complex solution)
\left\{\begin{matrix}\\x=\frac{3}{2}=1,5\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=-1\end{matrix}\right,
Lös ut y (complex solution)
\left\{\begin{matrix}\\y=-1\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=\frac{3}{2}\end{matrix}\right,
Lös ut x
\left\{\begin{matrix}\\x=\frac{3}{2}=1,5\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=-1\end{matrix}\right,
Lös ut y
\left\{\begin{matrix}\\y=-1\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=\frac{3}{2}\end{matrix}\right,
Graf
Aktie
Kopieras till Urklipp
2yx+x-5=3y-2-x
Använd den distributiva egenskapen för att multiplicera 2y+1 med x.
2yx+x-5+x=3y-2
Lägg till x på båda sidorna.
2yx+2x-5=3y-2
Slå ihop x och x för att få 2x.
2yx+2x=3y-2+5
Lägg till 5 på båda sidorna.
2yx+2x=3y+3
Addera -2 och 5 för att få 3.
\left(2y+2\right)x=3y+3
Slå ihop alla termer som innehåller x.
\frac{\left(2y+2\right)x}{2y+2}=\frac{3y+3}{2y+2}
Dividera båda led med 2y+2.
x=\frac{3y+3}{2y+2}
Division med 2y+2 tar ut multiplikationen med 2y+2.
x=\frac{3}{2}
Dela 3+3y med 2y+2.
2yx+x-5=3y-2-x
Använd den distributiva egenskapen för att multiplicera 2y+1 med x.
2yx+x-5-3y=-2-x
Subtrahera 3y från båda led.
2yx-5-3y=-2-x-x
Subtrahera x från båda led.
2yx-5-3y=-2-2x
Slå ihop -x och -x för att få -2x.
2yx-3y=-2-2x+5
Lägg till 5 på båda sidorna.
2yx-3y=3-2x
Addera -2 och 5 för att få 3.
\left(2x-3\right)y=3-2x
Slå ihop alla termer som innehåller y.
\frac{\left(2x-3\right)y}{2x-3}=\frac{3-2x}{2x-3}
Dividera båda led med -3+2x.
y=\frac{3-2x}{2x-3}
Division med -3+2x tar ut multiplikationen med -3+2x.
y=-1
Dela 3-2x med -3+2x.
2yx+x-5=3y-2-x
Använd den distributiva egenskapen för att multiplicera 2y+1 med x.
2yx+x-5+x=3y-2
Lägg till x på båda sidorna.
2yx+2x-5=3y-2
Slå ihop x och x för att få 2x.
2yx+2x=3y-2+5
Lägg till 5 på båda sidorna.
2yx+2x=3y+3
Addera -2 och 5 för att få 3.
\left(2y+2\right)x=3y+3
Slå ihop alla termer som innehåller x.
\frac{\left(2y+2\right)x}{2y+2}=\frac{3y+3}{2y+2}
Dividera båda led med 2y+2.
x=\frac{3y+3}{2y+2}
Division med 2y+2 tar ut multiplikationen med 2y+2.
x=\frac{3}{2}
Dela 3+3y med 2y+2.
2yx+x-5=3y-2-x
Använd den distributiva egenskapen för att multiplicera 2y+1 med x.
2yx+x-5-3y=-2-x
Subtrahera 3y från båda led.
2yx-5-3y=-2-x-x
Subtrahera x från båda led.
2yx-5-3y=-2-2x
Slå ihop -x och -x för att få -2x.
2yx-3y=-2-2x+5
Lägg till 5 på båda sidorna.
2yx-3y=3-2x
Addera -2 och 5 för att få 3.
\left(2x-3\right)y=3-2x
Slå ihop alla termer som innehåller y.
\frac{\left(2x-3\right)y}{2x-3}=\frac{3-2x}{2x-3}
Dividera båda led med -3+2x.
y=\frac{3-2x}{2x-3}
Division med -3+2x tar ut multiplikationen med -3+2x.
y=-1
Dela 3-2x med -3+2x.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}