Lös ut x
x=4
Graf
Aktie
Kopieras till Urklipp
x^{2}-8x+16=0
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(x-4\right)^{2}.
a+b=-8 ab=16
För att lösa ekvationen, faktor x^{2}-8x+16 med hjälp av formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Konfigurera ett system som ska lösas om du vill söka efter a och b.
-1,-16 -2,-8 -4,-4
Eftersom ab är positivt a och b ha samma tecken. Eftersom a+b är negativt är a och b negativa. Lista alla sådana heltalspar som ger produkten 16.
-1-16=-17 -2-8=-10 -4-4=-8
Beräkna summan för varje par.
a=-4 b=-4
Lösningen är det par som ger Summa -8.
\left(x-4\right)\left(x-4\right)
Skriv om det faktoriserade uttrycket \left(x+a\right)\left(x+b\right) med hjälp av de erhållna värdena.
\left(x-4\right)^{2}
Skriv om som en binomkvadrat.
x=4
Lös x-4=0 för att hitta ekvationslösning.
x^{2}-8x+16=0
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(x-4\right)^{2}.
a+b=-8 ab=1\times 16=16
För att lösa ekvationen kan du faktor den vänstra delen med hjälp av gruppering. Första, vänstra sidan måste skrivas om som x^{2}+ax+bx+16. Konfigurera ett system som ska lösas om du vill söka efter a och b.
-1,-16 -2,-8 -4,-4
Eftersom ab är positivt a och b ha samma tecken. Eftersom a+b är negativt är a och b negativa. Lista alla sådana heltalspar som ger produkten 16.
-1-16=-17 -2-8=-10 -4-4=-8
Beräkna summan för varje par.
a=-4 b=-4
Lösningen är det par som ger Summa -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Skriv om x^{2}-8x+16 som \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Utfaktor x i den första och den -4 i den andra gruppen.
\left(x-4\right)\left(x-4\right)
Bryt ut den gemensamma termen x-4 genom att använda distributivitet.
\left(x-4\right)^{2}
Skriv om som en binomkvadrat.
x=4
Lös x-4=0 för att hitta ekvationslösning.
x^{2}-8x+16=0
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(x-4\right)^{2}.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 1, b med -8 och c med 16 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Kvadrera -8.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Multiplicera -4 med 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Addera 64 till -64.
x=-\frac{-8}{2}
Dra kvadratroten ur 0.
x=\frac{8}{2}
Motsatsen till -8 är 8.
x=4
Dela 8 med 2.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Dra kvadratroten ur båda ekvationsled.
x-4=0 x-4=0
Förenkla.
x=4 x=4
Addera 4 till båda ekvationsled.
x=4
Ekvationen har lösts. Lösningarna är samma.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}