Hoppa till huvudinnehåll
Lös ut x
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

x^{2}-5x+6=2
Använd den distributiva egenskapen för att multiplicera x-3 med x-2 och slå ihop lika termer.
x^{2}-5x+6-2=0
Subtrahera 2 från båda led.
x^{2}-5x+4=0
Subtrahera 2 från 6 för att få 4.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 1, b med -5 och c med 4 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Kvadrera -5.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Multiplicera -4 med 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
Addera 25 till -16.
x=\frac{-\left(-5\right)±3}{2}
Dra kvadratroten ur 9.
x=\frac{5±3}{2}
Motsatsen till -5 är 5.
x=\frac{8}{2}
Lös nu ekvationen x=\frac{5±3}{2} när ± är plus. Addera 5 till 3.
x=4
Dela 8 med 2.
x=\frac{2}{2}
Lös nu ekvationen x=\frac{5±3}{2} när ± är minus. Subtrahera 3 från 5.
x=1
Dela 2 med 2.
x=4 x=1
Ekvationen har lösts.
x^{2}-5x+6=2
Använd den distributiva egenskapen för att multiplicera x-3 med x-2 och slå ihop lika termer.
x^{2}-5x=2-6
Subtrahera 6 från båda led.
x^{2}-5x=-4
Subtrahera 6 från 2 för att få -4.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Dividera -5, koefficienten för termen x, med 2 för att få -\frac{5}{2}. Addera sedan kvadraten av -\frac{5}{2} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
Kvadrera -\frac{5}{2} genom att kvadrera både täljaren och nämnaren i bråktalet.
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
Addera -4 till \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
Faktorisera x^{2}-5x+\frac{25}{4}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Dra kvadratroten ur båda ekvationsled.
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
Förenkla.
x=4 x=1
Addera \frac{5}{2} till båda ekvationsled.