Beräkna
-y
Utveckla
-y
Aktie
Kopieras till Urklipp
\frac{\left(x^{2}-4y^{2}\right)xy}{2y+x}\times \frac{1}{x\left(2y-x\right)}
Dela x^{2}-4y^{2} med \frac{2y+x}{xy} genom att multiplicera x^{2}-4y^{2} med reciproken till \frac{2y+x}{xy}.
\frac{xy\left(x-2y\right)\left(x+2y\right)}{x+2y}\times \frac{1}{x\left(2y-x\right)}
Faktorisera de uttryck som inte redan har faktoriserats i \frac{\left(x^{2}-4y^{2}\right)xy}{2y+x}.
xy\left(x-2y\right)\times \frac{1}{x\left(2y-x\right)}
Förkorta x+2y i både täljare och nämnare.
\left(-2xy^{2}+yx^{2}\right)\times \frac{1}{x\left(2y-x\right)}
Expandera uttrycket.
\left(-2xy^{2}+yx^{2}\right)\times \frac{1}{2xy-x^{2}}
Använd den distributiva egenskapen för att multiplicera x med 2y-x.
\frac{-2xy^{2}+yx^{2}}{2xy-x^{2}}
Uttryck \left(-2xy^{2}+yx^{2}\right)\times \frac{1}{2xy-x^{2}} som ett enda bråktal.
\frac{xy\left(x-2y\right)}{x\left(-x+2y\right)}
Faktorisera de uttryck som inte redan har faktoriserats.
\frac{-xy\left(-x+2y\right)}{x\left(-x+2y\right)}
Extrahera minustecknet i -2y+x.
-y
Förkorta x\left(-x+2y\right) i både täljare och nämnare.
\frac{\left(x^{2}-4y^{2}\right)xy}{2y+x}\times \frac{1}{x\left(2y-x\right)}
Dela x^{2}-4y^{2} med \frac{2y+x}{xy} genom att multiplicera x^{2}-4y^{2} med reciproken till \frac{2y+x}{xy}.
\frac{xy\left(x-2y\right)\left(x+2y\right)}{x+2y}\times \frac{1}{x\left(2y-x\right)}
Faktorisera de uttryck som inte redan har faktoriserats i \frac{\left(x^{2}-4y^{2}\right)xy}{2y+x}.
xy\left(x-2y\right)\times \frac{1}{x\left(2y-x\right)}
Förkorta x+2y i både täljare och nämnare.
\left(-2xy^{2}+yx^{2}\right)\times \frac{1}{x\left(2y-x\right)}
Expandera uttrycket.
\left(-2xy^{2}+yx^{2}\right)\times \frac{1}{2xy-x^{2}}
Använd den distributiva egenskapen för att multiplicera x med 2y-x.
\frac{-2xy^{2}+yx^{2}}{2xy-x^{2}}
Uttryck \left(-2xy^{2}+yx^{2}\right)\times \frac{1}{2xy-x^{2}} som ett enda bråktal.
\frac{xy\left(x-2y\right)}{x\left(-x+2y\right)}
Faktorisera de uttryck som inte redan har faktoriserats.
\frac{-xy\left(-x+2y\right)}{x\left(-x+2y\right)}
Extrahera minustecknet i -2y+x.
-y
Förkorta x\left(-x+2y\right) i både täljare och nämnare.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}