Lös ut x
x=\sqrt{5}\approx 2,236067977
x=-\sqrt{5}\approx -2,236067977
Graf
Aktie
Kopieras till Urklipp
4x^{2}-4x+1-\left(x-2\right)^{2}=12
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(2x-1\right)^{2}.
4x^{2}-4x+1-\left(x^{2}-4x+4\right)=12
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(x-2\right)^{2}.
4x^{2}-4x+1-x^{2}+4x-4=12
Hitta motsatsen till x^{2}-4x+4 genom att hitta motsatsen till varje term.
3x^{2}-4x+1+4x-4=12
Slå ihop 4x^{2} och -x^{2} för att få 3x^{2}.
3x^{2}+1-4=12
Slå ihop -4x och 4x för att få 0.
3x^{2}-3=12
Subtrahera 4 från 1 för att få -3.
3x^{2}=12+3
Lägg till 3 på båda sidorna.
3x^{2}=15
Addera 12 och 3 för att få 15.
x^{2}=\frac{15}{3}
Dividera båda led med 3.
x^{2}=5
Dividera 15 med 3 för att få 5.
x=\sqrt{5} x=-\sqrt{5}
Dra kvadratroten ur båda ekvationsled.
4x^{2}-4x+1-\left(x-2\right)^{2}=12
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(2x-1\right)^{2}.
4x^{2}-4x+1-\left(x^{2}-4x+4\right)=12
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(x-2\right)^{2}.
4x^{2}-4x+1-x^{2}+4x-4=12
Hitta motsatsen till x^{2}-4x+4 genom att hitta motsatsen till varje term.
3x^{2}-4x+1+4x-4=12
Slå ihop 4x^{2} och -x^{2} för att få 3x^{2}.
3x^{2}+1-4=12
Slå ihop -4x och 4x för att få 0.
3x^{2}-3=12
Subtrahera 4 från 1 för att få -3.
3x^{2}-3-12=0
Subtrahera 12 från båda led.
3x^{2}-15=0
Subtrahera 12 från -3 för att få -15.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-15\right)}}{2\times 3}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 3, b med 0 och c med -15 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-15\right)}}{2\times 3}
Kvadrera 0.
x=\frac{0±\sqrt{-12\left(-15\right)}}{2\times 3}
Multiplicera -4 med 3.
x=\frac{0±\sqrt{180}}{2\times 3}
Multiplicera -12 med -15.
x=\frac{0±6\sqrt{5}}{2\times 3}
Dra kvadratroten ur 180.
x=\frac{0±6\sqrt{5}}{6}
Multiplicera 2 med 3.
x=\sqrt{5}
Lös nu ekvationen x=\frac{0±6\sqrt{5}}{6} när ± är plus.
x=-\sqrt{5}
Lös nu ekvationen x=\frac{0±6\sqrt{5}}{6} när ± är minus.
x=\sqrt{5} x=-\sqrt{5}
Ekvationen har lösts.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}