Beräkna
-\sqrt{3}-4\sqrt{2}\approx -7,388905057
Aktie
Kopieras till Urklipp
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(2\sqrt{2}-1\right)^{2}.
4\times 2-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Kvadraten av \sqrt{2} är 2.
8-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Multiplicera 4 och 2 för att få 8.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Addera 8 och 1 för att få 9.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{2\sqrt{3}-3}{\sqrt{3}}
Faktorisera 12=2^{2}\times 3. Skriv om kvadratroten av produkt \sqrt{2^{2}\times 3} som produkten av fyrkantiga rötter \sqrt{2^{2}}\sqrt{3}. Dra kvadratroten ur 2^{2}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalisera nämnaren i \frac{2\sqrt{3}-3}{\sqrt{3}} genom att multiplicera täljare och nämnare med \sqrt{3}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Kvadraten av \sqrt{3} är 3.
\frac{3\left(9-4\sqrt{2}\right)}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Multiplicera 9-4\sqrt{2} med \frac{3}{3}.
\frac{3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Eftersom \frac{3\left(9-4\sqrt{2}\right)}{3} och \frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3} har samma nämnare adderar du dem genom att addera deras täljare.
\frac{27-12\sqrt{2}+6-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Gör multiplikationerna i 3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}.
\frac{33-12\sqrt{2}-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Gör beräkningarna i 27-12\sqrt{2}+6-3\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Dividera varje term av 33-12\sqrt{2}-3\sqrt{3} med 3 för att få 11-4\sqrt{2}-\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}-4\left(\sqrt{3}\right)^{2}+1
Använd den distributiva egenskapen för att multiplicera 2\sqrt{3}-1 med -2\sqrt{3}-1 och slå ihop lika termer.
11-4\sqrt{2}-\sqrt{3}-4\times 3+1
Kvadraten av \sqrt{3} är 3.
11-4\sqrt{2}-\sqrt{3}-12+1
Multiplicera -4 och 3 för att få -12.
11-4\sqrt{2}-\sqrt{3}-11
Addera -12 och 1 för att få -11.
-4\sqrt{2}-\sqrt{3}
Subtrahera 11 från 11 för att få 0.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}