Hoppa till huvudinnehåll
Beräkna
Tick mark Image
Utveckla
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Överväg \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Multiplikation kan transformeras till differens av kvadrater med regeln: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrera 1.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Utveckla \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Beräkna \frac{1}{2} upphöjt till 2 och få \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Slå ihop \frac{1}{4}x^{2} och \frac{1}{4}x^{2} för att få \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Subtrahera 1 från 1 för att få 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Överväg \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Multiplikation kan transformeras till differens av kvadrater med regeln: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrera 1.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Utveckla \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Beräkna -\frac{1}{2} upphöjt till 2 och få \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Slå ihop \frac{1}{2}x^{2} och \frac{1}{4}x^{2} för att få \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Använd binomialsatsen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} för att expandera \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Slå ihop \frac{3}{4}x^{2} och \frac{1}{4}x^{2} för att få x^{2}.
x^{2}+1-1
Slå ihop -x och x för att få 0.
x^{2}
Subtrahera 1 från 1 för att få 0.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Överväg \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Multiplikation kan transformeras till differens av kvadrater med regeln: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrera 1.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Utveckla \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Beräkna \frac{1}{2} upphöjt till 2 och få \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Slå ihop \frac{1}{4}x^{2} och \frac{1}{4}x^{2} för att få \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Subtrahera 1 från 1 för att få 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Överväg \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Multiplikation kan transformeras till differens av kvadrater med regeln: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrera 1.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Utveckla \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Beräkna -\frac{1}{2} upphöjt till 2 och få \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Slå ihop \frac{1}{2}x^{2} och \frac{1}{4}x^{2} för att få \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Använd binomialsatsen \left(a+b\right)^{2}=a^{2}+2ab+b^{2} för att expandera \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Slå ihop \frac{3}{4}x^{2} och \frac{1}{4}x^{2} för att få x^{2}.
x^{2}+1-1
Slå ihop -x och x för att få 0.
x^{2}
Subtrahera 1 från 1 för att få 0.