Hoppa till huvudinnehåll
Faktorisera
Tick mark Image
Beräkna
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

a+b=-9 ab=1\left(-10\right)=-10
Faktorisera uttrycket genom gruppering. Först måste uttrycket skrivas om som x^{2}+ax+bx-10. Konfigurera ett system som ska lösas om du vill söka efter a och b.
1,-10 2,-5
Eftersom ab är negativt a och b har motsatta tecken. Eftersom a+b är negativt har det negativa talet större absolut värde än det positiva. Lista alla sådana heltalspar som ger produkten -10.
1-10=-9 2-5=-3
Beräkna summan för varje par.
a=-10 b=1
Lösningen är det par som ger Summa -9.
\left(x^{2}-10x\right)+\left(x-10\right)
Skriv om x^{2}-9x-10 som \left(x^{2}-10x\right)+\left(x-10\right).
x\left(x-10\right)+x-10
Bryt ut x i x^{2}-10x.
\left(x-10\right)\left(x+1\right)
Bryt ut den gemensamma termen x-10 genom att använda distributivitet.
x^{2}-9x-10=0
Ett kvadratisk polynom kan faktoriseras med transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), där x_{1} och x_{2} är lösningarna för andragradsekvationen ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-10\right)}}{2}
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-10\right)}}{2}
Kvadrera -9.
x=\frac{-\left(-9\right)±\sqrt{81+40}}{2}
Multiplicera -4 med -10.
x=\frac{-\left(-9\right)±\sqrt{121}}{2}
Addera 81 till 40.
x=\frac{-\left(-9\right)±11}{2}
Dra kvadratroten ur 121.
x=\frac{9±11}{2}
Motsatsen till -9 är 9.
x=\frac{20}{2}
Lös nu ekvationen x=\frac{9±11}{2} när ± är plus. Addera 9 till 11.
x=10
Dela 20 med 2.
x=-\frac{2}{2}
Lös nu ekvationen x=\frac{9±11}{2} när ± är minus. Subtrahera 11 från 9.
x=-1
Dela -2 med 2.
x^{2}-9x-10=\left(x-10\right)\left(x-\left(-1\right)\right)
Faktorisera det ursprungliga uttrycket med ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Ersätt x_{1} med 10 och x_{2} med -1.
x^{2}-9x-10=\left(x-10\right)\left(x+1\right)
Förenkla alla uttryck på formen p-\left(-q\right) till p+q.