Hoppa till huvudinnehåll
Faktorisera
Tick mark Image
Beräkna
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

a+b=5 ab=1\left(-14\right)=-14
Faktorisera uttrycket genom gruppering. Först måste uttrycket skrivas om som x^{2}+ax+bx-14. Konfigurera ett system som ska lösas om du vill söka efter a och b.
-1,14 -2,7
Eftersom ab är negativt a och b har motsatta tecken. Eftersom a+b är positivt har det positiva talet större absolut värde än det negativa. Lista alla sådana heltalspar som ger produkten -14.
-1+14=13 -2+7=5
Beräkna summan för varje par.
a=-2 b=7
Lösningen är det par som ger Summa 5.
\left(x^{2}-2x\right)+\left(7x-14\right)
Skriv om x^{2}+5x-14 som \left(x^{2}-2x\right)+\left(7x-14\right).
x\left(x-2\right)+7\left(x-2\right)
Bryt ut x i den första och 7 i den andra gruppen.
\left(x-2\right)\left(x+7\right)
Bryt ut den gemensamma termen x-2 genom att använda distributivitet.
x^{2}+5x-14=0
Ett kvadratisk polynom kan faktoriseras med transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), där x_{1} och x_{2} är lösningarna för andragradsekvationen ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-14\right)}}{2}
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
x=\frac{-5±\sqrt{25-4\left(-14\right)}}{2}
Kvadrera 5.
x=\frac{-5±\sqrt{25+56}}{2}
Multiplicera -4 med -14.
x=\frac{-5±\sqrt{81}}{2}
Addera 25 till 56.
x=\frac{-5±9}{2}
Dra kvadratroten ur 81.
x=\frac{4}{2}
Lös nu ekvationen x=\frac{-5±9}{2} när ± är plus. Addera -5 till 9.
x=2
Dela 4 med 2.
x=-\frac{14}{2}
Lös nu ekvationen x=\frac{-5±9}{2} när ± är minus. Subtrahera 9 från -5.
x=-7
Dela -14 med 2.
x^{2}+5x-14=\left(x-2\right)\left(x-\left(-7\right)\right)
Faktorisera det ursprungliga uttrycket med ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Ersätt x_{1} med 2 och x_{2} med -7.
x^{2}+5x-14=\left(x-2\right)\left(x+7\right)
Förenkla alla uttryck på formen p-\left(-q\right) till p+q.