Hoppa till huvudinnehåll
Faktorisera
Tick mark Image
Beräkna
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

a+b=4 ab=1\left(-12\right)=-12
Faktorisera uttrycket genom gruppering. Först måste uttrycket skrivas om som x^{2}+ax+bx-12. Konfigurera ett system som ska lösas om du vill söka efter a och b.
-1,12 -2,6 -3,4
Eftersom ab är negativt a och b har motsatta tecken. Eftersom a+b är positivt har det positiva talet större absolut värde än det negativa. Lista alla sådana heltalspar som ger produkten -12.
-1+12=11 -2+6=4 -3+4=1
Beräkna summan för varje par.
a=-2 b=6
Lösningen är det par som ger Summa 4.
\left(x^{2}-2x\right)+\left(6x-12\right)
Skriv om x^{2}+4x-12 som \left(x^{2}-2x\right)+\left(6x-12\right).
x\left(x-2\right)+6\left(x-2\right)
Utfaktor x i den första och den 6 i den andra gruppen.
\left(x-2\right)\left(x+6\right)
Bryt ut den gemensamma termen x-2 genom att använda distributivitet.
x^{2}+4x-12=0
Ett kvadratisk polynom kan faktoriseras med transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), där x_{1} och x_{2} är lösningarna för andragradsekvationen ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\left(-12\right)}}{2}
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
x=\frac{-4±\sqrt{16-4\left(-12\right)}}{2}
Kvadrera 4.
x=\frac{-4±\sqrt{16+48}}{2}
Multiplicera -4 med -12.
x=\frac{-4±\sqrt{64}}{2}
Addera 16 till 48.
x=\frac{-4±8}{2}
Dra kvadratroten ur 64.
x=\frac{4}{2}
Lös nu ekvationen x=\frac{-4±8}{2} när ± är plus. Addera -4 till 8.
x=2
Dela 4 med 2.
x=-\frac{12}{2}
Lös nu ekvationen x=\frac{-4±8}{2} när ± är minus. Subtrahera 8 från -4.
x=-6
Dela -12 med 2.
x^{2}+4x-12=\left(x-2\right)\left(x-\left(-6\right)\right)
Faktorisera det ursprungliga uttrycket med ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Ersätt x_{1} med 2 och x_{2} med -6.
x^{2}+4x-12=\left(x-2\right)\left(x+6\right)
Förenkla alla uttryck på formen p-\left(-q\right) till p+q.