Hoppa till huvudinnehåll
Lös ut x (complex solution)
Tick mark Image
Graf

Liknande problem från webbsökning

Aktie

x^{2}+3x+9=6
Alla ekvationer på formen ax^{2}+bx+c=0 kan lösas med hjälp av lösningsformeln: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Lösningsformeln ger två lösningar, en när ± är addition och en när det är subtraktion.
x^{2}+3x+9-6=6-6
Subtrahera 6 från båda ekvationsled.
x^{2}+3x+9-6=0
Subtraktion av 6 från sig självt ger 0 som resultat.
x^{2}+3x+3=0
Subtrahera 6 från 9.
x=\frac{-3±\sqrt{3^{2}-4\times 3}}{2}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med 1, b med 3 och c med 3 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 3}}{2}
Kvadrera 3.
x=\frac{-3±\sqrt{9-12}}{2}
Multiplicera -4 med 3.
x=\frac{-3±\sqrt{-3}}{2}
Addera 9 till -12.
x=\frac{-3±\sqrt{3}i}{2}
Dra kvadratroten ur -3.
x=\frac{-3+\sqrt{3}i}{2}
Lös nu ekvationen x=\frac{-3±\sqrt{3}i}{2} när ± är plus. Addera -3 till i\sqrt{3}.
x=\frac{-\sqrt{3}i-3}{2}
Lös nu ekvationen x=\frac{-3±\sqrt{3}i}{2} när ± är minus. Subtrahera i\sqrt{3} från -3.
x=\frac{-3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-3}{2}
Ekvationen har lösts.
x^{2}+3x+9=6
Andragradsekvationer som den här kan lösas med hjälp av kvadratkomplettering. För kvadratkomplettering måste ekvationen först skrivas om på formen x^{2}+bx=c.
x^{2}+3x+9-9=6-9
Subtrahera 9 från båda ekvationsled.
x^{2}+3x=6-9
Subtraktion av 9 från sig självt ger 0 som resultat.
x^{2}+3x=-3
Subtrahera 9 från 6.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-3+\left(\frac{3}{2}\right)^{2}
Dividera 3, koefficienten för termen x, med 2 för att få \frac{3}{2}. Addera sedan kvadraten av \frac{3}{2} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}+3x+\frac{9}{4}=-3+\frac{9}{4}
Kvadrera \frac{3}{2} genom att kvadrera både täljaren och nämnaren i bråktalet.
x^{2}+3x+\frac{9}{4}=-\frac{3}{4}
Addera -3 till \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{3}{4}
Faktorisera x^{2}+3x+\frac{9}{4}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Dra kvadratroten ur båda ekvationsled.
x+\frac{3}{2}=\frac{\sqrt{3}i}{2} x+\frac{3}{2}=-\frac{\sqrt{3}i}{2}
Förenkla.
x=\frac{-3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-3}{2}
Subtrahera \frac{3}{2} från båda ekvationsled.