Hoppa till huvudinnehåll
Beräkna
Tick mark Image

Liknande problem från webbsökning

Aktie

\int _{0}^{1}8x^{3}-12x^{2}+6x-1\mathrm{d}x
Använd binomialsatsen \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} för att expandera \left(2x-1\right)^{3}.
\int 8x^{3}-12x^{2}+6x-1\mathrm{d}x
Beräkna den obestämda integralen först.
\int 8x^{3}\mathrm{d}x+\int -12x^{2}\mathrm{d}x+\int 6x\mathrm{d}x+\int -1\mathrm{d}x
Integrera summan för termer per term.
8\int x^{3}\mathrm{d}x-12\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x+\int -1\mathrm{d}x
Bryta ut konstanten i varje term.
2x^{4}-12\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x+\int -1\mathrm{d}x
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x^{3}\mathrm{d}x med \frac{x^{4}}{4}. Multiplicera 8 med \frac{x^{4}}{4}.
2x^{4}-4x^{3}+6\int x\mathrm{d}x+\int -1\mathrm{d}x
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x^{2}\mathrm{d}x med \frac{x^{3}}{3}. Multiplicera -12 med \frac{x^{3}}{3}.
2x^{4}-4x^{3}+3x^{2}+\int -1\mathrm{d}x
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x\mathrm{d}x med \frac{x^{2}}{2}. Multiplicera 6 med \frac{x^{2}}{2}.
2x^{4}-4x^{3}+3x^{2}-x
Leta reda på integralen av -1 med hjälp av tabellen med vanliga integralregel \int a\mathrm{d}x=ax.
2\times 1^{4}-4\times 1^{3}+3\times 1^{2}-1-\left(2\times 0^{4}-4\times 0^{3}+3\times 0^{2}-0\right)
Den bestämda integralen är det som utvärderades vid den övre integrationsgränsen minus det derivatet som utvärderats vid den undre integrationsgränsen.
0
Förenkla.