Hoppa till huvudinnehåll
Beräkna
Tick mark Image
Derivera m.a.p. x
Tick mark Image

Liknande problem från webbsökning

Aktie

\int x^{2}\left(x^{3}+3x^{2}+3x+1\right)\mathrm{d}x
Använd binomialsatsen \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} för att expandera \left(x+1\right)^{3}.
\int x^{5}+3x^{4}+3x^{3}+x^{2}\mathrm{d}x
Använd den distributiva egenskapen för att multiplicera x^{2} med x^{3}+3x^{2}+3x+1.
\int x^{5}\mathrm{d}x+\int 3x^{4}\mathrm{d}x+\int 3x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Integrera summan för termer per term.
\int x^{5}\mathrm{d}x+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Bryta ut konstanten i varje term.
\frac{x^{6}}{6}+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x^{5}\mathrm{d}x med \frac{x^{6}}{6}.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x^{4}\mathrm{d}x med \frac{x^{5}}{5}. Multiplicera 3 med \frac{x^{5}}{5}.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\int x^{2}\mathrm{d}x
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x^{3}\mathrm{d}x med \frac{x^{4}}{4}. Multiplicera 3 med \frac{x^{4}}{4}.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\frac{x^{3}}{3}
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x^{2}\mathrm{d}x med \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}
Förenkla.
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}+С
Om F\left(x\right) är en dederivat av f\left(x\right) får mängden av alla polyderivat av f\left(x\right) med F\left(x\right)+C. Lägg därför C\in \mathrm{R} till den till resultatet.