Hoppa till huvudinnehåll
Beräkna
Tick mark Image

Liknande problem från webbsökning

Aktie

\int _{2}^{7}\left(4112x-\left(-\left(x-2\right)\left(x-2\right)\right)\right)\times \frac{7}{23}\mathrm{d}x
Förkorta 2 och 2.
\int _{2}^{7}\left(4112x-\left(-\left(x-2\right)x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Använd den distributiva egenskapen för att multiplicera -\left(x-2\right) med x-2.
\int _{2}^{7}\left(4112x-\left(\left(-x+2\right)x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Använd den distributiva egenskapen för att multiplicera -1 med x-2.
\int _{2}^{7}\left(4112x-\left(-x^{2}+2x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Använd den distributiva egenskapen för att multiplicera -x+2 med x.
\int _{2}^{7}\left(4112x-\left(-x^{2}+4x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Slå ihop 2x och 2x för att få 4x.
\int _{2}^{7}\left(4112x-\left(-x^{2}\right)-4x-\left(-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Hitta motsatsen till -x^{2}+4x-4 genom att hitta motsatsen till varje term.
\int _{2}^{7}\left(4112x+x^{2}-4x-\left(-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Motsatsen till -x^{2} är x^{2}.
\int _{2}^{7}\left(4112x+x^{2}-4x+4\right)\times \frac{7}{23}\mathrm{d}x
Motsatsen till -4 är 4.
\int _{2}^{7}\left(4108x+x^{2}+4\right)\times \frac{7}{23}\mathrm{d}x
Slå ihop 4112x och -4x för att få 4108x.
\int _{2}^{7}4108x\times \frac{7}{23}+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
Använd den distributiva egenskapen för att multiplicera 4108x+x^{2}+4 med \frac{7}{23}.
\int _{2}^{7}\frac{4108\times 7}{23}x+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
Uttryck 4108\times \frac{7}{23} som ett enda bråktal.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
Multiplicera 4108 och 7 för att få 28756.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+\frac{4\times 7}{23}\mathrm{d}x
Uttryck 4\times \frac{7}{23} som ett enda bråktal.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+\frac{28}{23}\mathrm{d}x
Multiplicera 4 och 7 för att få 28.
\int \frac{28756x+7x^{2}+28}{23}\mathrm{d}x
Beräkna den obestämda integralen först.
\int \frac{28756x}{23}\mathrm{d}x+\int \frac{7x^{2}}{23}\mathrm{d}x+\int \frac{28}{23}\mathrm{d}x
Integrera summan för termer per term.
\frac{28756\int x\mathrm{d}x}{23}+\frac{7\int x^{2}\mathrm{d}x}{23}+\int \frac{28}{23}\mathrm{d}x
Bryta ut konstanten i varje term.
\frac{14378x^{2}}{23}+\frac{7\int x^{2}\mathrm{d}x}{23}+\int \frac{28}{23}\mathrm{d}x
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x\mathrm{d}x med \frac{x^{2}}{2}. Multiplicera \frac{28756}{23} med \frac{x^{2}}{2}.
\frac{14378x^{2}}{23}+\frac{7x^{3}}{69}+\int \frac{28}{23}\mathrm{d}x
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x^{2}\mathrm{d}x med \frac{x^{3}}{3}. Multiplicera \frac{7}{23} med \frac{x^{3}}{3}.
\frac{14378x^{2}}{23}+\frac{7x^{3}}{69}+\frac{28x}{23}
Leta reda på integralen av \frac{28}{23} med hjälp av tabellen med vanliga integralregel \int a\mathrm{d}x=ax.
\frac{14378}{23}\times 7^{2}+\frac{7}{69}\times 7^{3}+\frac{28}{23}\times 7-\left(\frac{14378}{23}\times 2^{2}+\frac{7}{69}\times 2^{3}+\frac{28}{23}\times 2\right)
Den bestämda integralen är det som utvärderades vid den övre integrationsgränsen minus det derivatet som utvärderats vid den undre integrationsgränsen.
\frac{1943795}{69}
Förenkla.