Hoppa till huvudinnehåll
Beräkna
Tick mark Image

Liknande problem från webbsökning

Aktie

\int _{0}^{2}16x^{2}-8xx^{3}+\left(x^{3}\right)^{2}\mathrm{d}x
Använd binomialsatsen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} för att expandera \left(4x-x^{3}\right)^{2}.
\int _{0}^{2}16x^{2}-8x^{4}+\left(x^{3}\right)^{2}\mathrm{d}x
Om du vill multiplicera potenser för samma bas lägger du till deras exponenter. Addera 1 och 3 för att få 4.
\int _{0}^{2}16x^{2}-8x^{4}+x^{6}\mathrm{d}x
Om du vill upphöja ett tal till ett annat upphöjt tal multiplicerar du exponenterna. Multiplicera 3 och 2 för att få 6.
\int 16x^{2}-8x^{4}+x^{6}\mathrm{d}x
Beräkna den obestämda integralen först.
\int 16x^{2}\mathrm{d}x+\int -8x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Integrera summan för termer per term.
16\int x^{2}\mathrm{d}x-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Bryta ut konstanten i varje term.
\frac{16x^{3}}{3}-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x^{2}\mathrm{d}x med \frac{x^{3}}{3}. Multiplicera 16 med \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\int x^{6}\mathrm{d}x
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x^{4}\mathrm{d}x med \frac{x^{5}}{5}. Multiplicera -8 med \frac{x^{5}}{5}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\frac{x^{7}}{7}
Sedan \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} för k\neq -1 ersätter du \int x^{6}\mathrm{d}x med \frac{x^{7}}{7}.
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+\frac{16x^{3}}{3}
Förenkla.
\frac{2^{7}}{7}-\frac{8}{5}\times 2^{5}+\frac{16}{3}\times 2^{3}-\left(\frac{0^{7}}{7}-\frac{8}{5}\times 0^{5}+\frac{16}{3}\times 0^{3}\right)
Den bestämda integralen är det som utvärderades vid den övre integrationsgränsen minus det derivatet som utvärderats vid den undre integrationsgränsen.
\frac{1024}{105}
Förenkla.